

109456, Москва, 1-й Вешняковский пр., д.2 тел.: (495) 174-82-82, 171-09-21

> P.№ 227 Зак. № 765

Œ

ПИД-регулятор

руководство по эксплуатации

Содержание

Введение	4
1. Назначение	6
2. Технические характеристики и условия эксплуатации	7
3. Устройство и работа прибора	13
3.1. Конструкция прибора	
3.1.1. Корпус	13
3.1.2. Индикация и управление	13
3.2. Описание работы прибора	15
3.2.1. Структурная схема	15
3.2.2. Измерительный вход	17
3.2.3. Дополнительный вход	17
3.2.4. Цифровой фильтр	
3.2.5. Коррекция измерений	19
3.2.6. Двухпозиционный регулятор	21
3.2.7. ПИД-регулятор	22
3.2.8. Устройства аварийной сигнализации	27
3.2.9. Выходные устройства прибора	
3.2.10. Интерфейс связи RS-485	32
4. Меры безопасности	34
5. Подготовка прибора к работе	35
5.1. Монтаж прибора на объекте	35
5.2. Монтаж внешних связей	36
5.2.1. Общие указания	36

Содержание

5.00 V	
5.2.2. Указания по монтажу для уменьшения	
электромагнитных помех	36
5.2.3. Указания по монтажу для уменьшения помех,	
возникающих в питающей сети	37
5.3. Подключение прибора	38
5.3.1. Общие указания	38
5.3.2. Подключение внешних устройств управления	38
5.3.3. Подключение датчиков	42
5.4. Включение и опробование прибора	45
6. Программирование прибора	
6.1. Общие сведения	
6.2. Порядок программирования	48
6.2.1. Установка параметров основного (измерительного) входа	48
6.2.2. Установка параметров цифрового фильтра	50
6.2.3. Установка параметров ВУ прибора	51
6.2.4. Установка параметров процесса регулирования	53
6.2.5. Установка параметров режима ручного управления	
ПИД-регулятором	55
6.2.6. Установка режима быстрого выхода на уставку	56
6.2.7. Настройка компаратора и устройства «LBA»	57
6.2.8. Настройка параметров дополнительного входа	59
6.2.9. Защита отдельных параметров от просмотра и изменений	59
6.2.10. Настройка обмена данными через интерфейс RS-485	60
6.3. Восстановление заводских установок	60

Содержание

7. настроика ПИД-регулятора	61
7.1. Автонастройка	61
7.1.1. Общие сведения	61
7.1.2. Выполнение автонастройки	61
7.2. Ручная настройка	63
8. Эксплуатация	64
8.1. Общие сведения	64
8.2. Настройка запуска/остановки процесса регулирования	64
8.3. Регулирование	64
9. Техническое обслуживание	66
10. Маркировка и упаковка	67
11. Гарантийные обязательства	68
Приложения	
А. Габаритный чертеж	69
Б. Схемы подключения	72
В. Подключение ТС по двухпроводной схеме	75
Г. Программируемые параметры	76
Д. Возможные неисправности и способы их устранения	85
Е. Юстировка	90
Лист регистрации изменений	102

Введение

Настоящий паспорт и руководство по эксплуатации предназначены для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, порядком эксплуатации и обслуживания одноканальных измерителей-регуляторов микропроцессорных типа TPM210 (далее «приборы» или TPM210).

Приборы ТРМ210 могут выпускаться в различных модификациях, отличающихся друг от друга конструктивным исполнением и типом встроенных выходных устройств.

Модификации прибора соответствует следующее условное обозначение:

ПРИБОР ТРМ210-Х.ХХ Конструктивное исполнение Тип встроенного выходного устройства 1 Тип встроенного выходного устройства 2

Конструктивное исполнение:

- корпус настенного крепления с размерами 130×105×65 мм и степенью защиты корпуса ІР44;
- корпус щитового крепления с размерами 96×96×70 мм и степенью защиты со стороны передней панели ІР54;
- корпус щитового крепления с размерами 96×48×100 мм и степенью защиты со стороны передней панели IP20.

Габаритные чертежи корпусов различных типов приведены в прил. А.

Введение

Тип встроенного выходного устройства 1(2):

- реле электромагнитное;
- оптопара транзисторная структуры n-p-n-типа;
- оптопара симисторная;
- цифроаналоговый преобразователь «параметр-ток 4...20 мА»;
- цифроаналоговый преобразователь «параметр-напряжение 0...10 В»;
- выход для управления внешним твердотельным реле;
- три симисторные оптопары для управления трехфазной нагрузкой.

Пример записи условного обозначения прибора при заказе и в документации другой продукции, где они могут быть применены:

Прибор ТРМ210-Н.РИ ТУ 4211-011-46526536-2004

Это означает, что изготовлению и поставке подлежит измеритель-регулятор ТРМ210 в корпусе настенного крепления, оснащенный в качестве выходных устройств электромагнитным реле и цифроаналоговым преобразователем «параметр - ток 4...20 мА».

Прибор имеет сертификат соответствия № 03.009.0194.

Приборы TPM210 в комплекте с первичным преобразователем предназначены для измерения физического параметра контролируемого объекта, отображения измеренного параметра на встроенном цифровом индикаторе; а также для формирования сигналов управления встроенными выходными устройствами, которые осуществляют регулирование измеряемого параметра.

Приборы TPM210 могут быть использованы в системах контроля и регулирования при выполнении технологических процессов в разных отраслях промышленности и сельском хозяйстве.

Прибор может выполнять следующие функции:

- 1. Измерение температуры или другой физической величины;
- 2. Регулирование измеряемой величины по ПИД-закону путем импульсного или аналогового управления или по двухпозиционному закону:
- 3. Автонастройка ПИД-регулятора на установленном объекте;
- 4. Ручное управление выходной мощностью ПИД-регулятора;
- 5. Определение аварийной ситуации при выходе измеряемого параметра за заданные границы и при обрыве в контуре регулирования;
- 6. Обнаружение ошибок работы и определение причины неисправности;
- 7. Работа в сети, организованной по стандарту RS-485, что позволяет задавать необходимые режимы работы прибора и осуществлять контроль;
- 8. Дистанционное управление запуском и остановкой регулирования.

Раздел 2 Технические характеристики и условия эксплуатации

2.1. Основные технические характеристики приведены в табл. 1 – 7.

Таблица 1

Питание

Наименование	Значение
Напряжение питания, В Потребляемая мощность, ВА Частота, Гц	90245 6 4763

Таблица 2

Датчики и входные сигналы

•		
Тип датчика или входной сигнал	Диапазон измерения	Разрешающая способность
Термопара		
TXK (L) TXA (K)	−200+800 °C −200+1300 °C	
THH (N) TЖК (J)	−200+1300 °C −200+1200 °C	
TMK (T)	−200+400 °C	2.4.2
TBP (A–1) TBP (A–2)	0+2500 °C 0+1800 °C	0,1 °C
TBP (A-3)	0+1800 °C	
ΤΠΠ (R) ΤΠΠ (S)	0+1750 °C 0+1750 °C	
TПP (B)	+200+1800 °C	

Технические характеристики и условия эксплуатации Раздел 2

Термопреобразователь сопротивления			
TCM(Cu 50) $W_{100} = 1,4260$ TCM(50M) $W_{100} = 1,4280$ TCΠ(Pt50) $W_{100} = 1,3850$ TCΠ(50Π) $W_{100} = 1,3910$ TCM(Cu100) $W_{100} = 1,4260$ TCM(100M) $W_{100} = 1,4280$ TCΠ(Pt100) $W_{100} = 1,3850$ TCΠ(100Π) $W_{100} = 1,3910$	-50+200 °C -190+200 °C -200+750 °C -200+750 °C -50+200 °C -190+200 °C -200+750 °C -200+750 °C	0,1 °C	
Термопреобразователь сопротивления	я (по ГОСТ 6651-78)		
ТСП(46П) W ₁₀₀ = 1,3910 (гр. 21) ТСМ(53М) W ₁₀₀ = 1,4260 (гр. 23)	−200+750 °C −50+200 °C		
Унифицированный сигнал постоянног	о тока		
420 мА 020 мА 05 мА	0100 % 0100 % 0100 %	0,1 %	
Унифицированный сигнал постоянного напряжения			
01 В -50+50 мВ	0100 % 0100 %	0,1 %	
Примечания. 1. W ₁₀₀ – отношение сопротивления датчика при 100 °C к его сопротивлению при 0 °C. 2. При температурах выше1000 °C и ниже минус 200 °C разрешающая способность равна 1 °C.			

Раздел 2 Технические характеристики и условия эксплуатации

Таблица 3

Входы

Наименование	Значение
Основной вход	
Время опроса датчика	1 c
Входное сопротивление прибора при	
подключении источника	
унифицированного сигнала:	
– тока (с подключенным внешним	100 Ом ± 0,1 %
прецизионным резистором, см. п. 5.3.3.3.1)	
– напряжения, не менее	100 кОм
Предел допустимой основной приведенной	
погрешности прибора при измерении: - термопреобразователем сопротивления	0,25 %
термопреобразователем сопротивлениятермопарой	0,23 %
 термопарои унифицированных сигналов тока и напряжения 	0,5 %
, , , ,	0,3 70
Дополнительный вход	
Сопротивление ключей в состоянии:	
– «замкнуто»	01 кОм
– «разомкнуто»	100 кОм∞

Технические характеристики и условия эксплуатации Раздел 2

Таблица 4

Выходные устройства ключевого типа

Тип ВУ	Ток нагрузки	Напряжение
Транзисторная оптопара	200 мА	40 В пост. тока
Симисторная оптопара1):	0,5 A ²⁾	240 B
Электромагнитное реле ³⁾ :		
 ПИД-регулирование пвухрозиционное регулирование 	1 A 8 A	220 В перем. тока, частотой 5060 Гц, соѕ φ≥ 0,4; 30 В пост. тока аналогично
– двухпозиционное регулирование	O A	аналогично
Выход для управления внешним твердотельным реле	не более 100 мА	46 B
Примечания: 1) Характеристики приведены для оптопары, управляющей мощными тиристорами 2) При работе симисторной оптопары в непрерывном режиме ток нагрузки не может превышать 50 мА		

³⁾ Электрическая прочность реле при максимальной нагрузке 10⁶ переключений

Раздел 2 Технические характеристики и условия эксплуатации

Таблица 5

Выходные устройства аналогового типа

	Тип ВУ	
Наименование	ЦАП	ЦАП
	«параметр – напряжение»	«параметр – ток»
Диапазон выходного сигнала	010 B	420 мА
Дискретность ЦАП	10 разрядов	10 разрядов
Сопротивление нагрузки	более 2 кОм	01000 Ом
Диапазон напряжения постоянного питания	1532 B	1530 B
Предел допустимой основной приведенной		
погрешности измерительного		
преобразователя (ЦАП)	0,5 %	0,5 %

Таблица 6

Интерфейс связи

Наименование	Значение	
Тип интерфейса	RS-485	
Скорость передачи данных, кбит/с	2,4; 4,8; 9,6; 14,4; 19,6; 28,8; 38,4; 57,6; 115,2	
Тип кабеля	Экранированная	
	витая пара	

Раздел 2 Технические характеристики и условия эксплуатации

Таблица 7

Характеристики корпусов

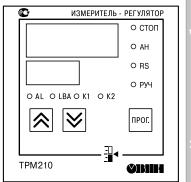
Наименование	Корпус		
Паименование	щитовой Щ1	щитовой Щ2	настенный Н
Габаритные размеры, мм (без элементов крепления) Степень защиты корпуса	96×96×70 IP54¹	96×48×100 IP20¹	130×105×65 IP44
Примечание. 1 – со стороны передней панели.		•	•

2.2. Прибор соответствует группе климатического исполнения УХЛ4 по ГОСТ 15150-69 и предназначен для эксплуатации в следующих условиях:

температура окружающего воздуха	+150 °C
относительная влажность при 35 °C	3080 %
атмосферное давление	84106,7 кПа

Раздел 3

Устройство и работа прибора


3.1. Конструкция прибора

3.1.1. Корпус

- 3.1.1.1. Прибор конструктивно выполнен в пластмассовом корпусе, предназначенном для щитового или настенного крепления. Эскизы корпусов с габаритными и установочными размерами приведены в прил. А.
- 3.1.1.2. Все элементы прибора размещены на двух печатных платах. На лицевой панели расположены клавиатура управления прибором, цифровой индикатор и светодиоды, на задней, силовая и измерительная части, а также присоединительный клеммник.
- 3.1.1.3. Для установки прибора в щит в комплекте прилагаются крепежные элементы.
- 3.1.1.4. Клеммник для подсоединения внешних связей (датчиков, выходных цепей и питания) у приборов щитового крепления находится на задней стенке. В приборах настенного крепления клеммник расположен под верхней крышкой. В отверстиях подвода внешних связей установлены резиновые уплотнители.

3.1.2. Индикация и управление

- 3.1.2.1. На рис. 1, а приведен внешний вид лицевой панели прибора ТРМ210 для корпусов настенного (Н) и щитового (Щ1) крепления, а на рис. 1, б – щитового (Щ2).
- 3.1.2.2. На лицевой панели расположены следующие элементы управления и индикации.

a)

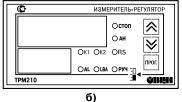


Рис. 1

Устройство и работа прибора

Раздел 3

Верхний цифровой индикатор красного цвета отображает:

- текущие значения измеряемых величин,
- при программировании название параметра,
- в МЕНЮ надпись «**лЕпЦ**».

Нижний цифровой индикатор зеленого цвета отображает:

- значения уставок;
- при программировании значение параметра;
- в МЕНЮ название группы параметров.

Свечение светодиодов означает:

Κ1 включено выходное устройство 1;

Κ2 включено выходное устройство 2;

- мигает при выходе регулируемой величины за заданные пределы;

LBA - мигает, если обнаружен обрыв в цепи регулирования;

СТОП постоянное свечение, если регулятор остановлен;

мигает, если остановка регулятора произошла из-за аварии LBA или

аппаратной ошибки;

AΗ - постоянное свечение при выполнении автонастройки;

гаснет при удачном завершении автонастройки;

мигает, если автонастройка закончена неудачно;

RS - засвечивается на 1с в момент передачи данных от компьютера;

РУЧ - светится в режиме ручного управления выходным сигналом ПИД-регулятора.

Раздел 3

Устройство и работа прибора

3.1.2.3. Кнопки, находящиеся на передней панели прибора, имеют следующее назначение:

для увеличения значения программируемого параметра;

- для уменьшения значения программируемого параметра;

 для входа в меню программирования или для перехода к следующему параметру.

При работе с прибором ТРМ210 для входа в специальные режимы работы прибора используются комбинации кнопок:

🔞 + 🚫 - для перехода к установке кодов доступа, на индикаторе получаем

В режиме ПРОГРАММИРОВАНИЕ:

- для отображения и редактирования дробной части значения программируемого параметра;

- для возврата в режим отображения и редактирования целой части значения программируемого параметра.

3.2. Описание работы прибора

3.2.1. Структурная схема

3.2.1. В процессе работы ТРМ210 производит опрос входных датчиков, вычисляя по полученным данным текущие значения измеряемых величин, отображает их на цифровом

индикаторе и выдает соответствующие сигналы на выходные устройства.

Структурная схема прибора приведена на рис. 2. Прибор включает в себя:

- универсальный вход для подключения первичных преобразователей (датчиков);
- дополнительный вход для дистанционного управления процессом регулирования;
- блок обработки данных, предназначенный для цифровой фильтрации, коррекции, регистрации и регулирования входной величины и включающий в себя устройства сигнализации;
- два выходных устройства (ВУ), которые в зависимости от модификации прибора могут быть ключевого или аналогового типа;
- два цифровых индикатора для отображения регулируемой величины и ее уставки.

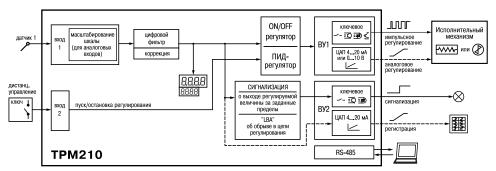


Рис. 2. Структурная схема ТРМ210

3.2.2. Измерительный вход

Порядок установки параметров измерительного входа описан в п. 6.2.1

К измерительному входу можно подключать любой из вышеперечисленных датчиков (см. табл. 2), поэтому он называется универсальным. Для измерения температур следует использовать термопреобразователи сопротивления и термоэлектрические преобразователи (термопары). Для измерения других физических параметров могут быть использованы датчики, оснащенные нормирующими преобразователями этих параметров в унифицированные сигналы постоянного тока 4...20 мА, 0...20 мА, 0...5 мА или напряжения –50...50 мВ и 0...1 В. Особенности подключения датчиков описаны в п. 5.3.3, схемы подключения приведены в прил. Б.

3.2.3. Дополнительный вход

Порядок установки параметров дополнительного входа описан в п. 6.2.8

К дополнительному входу подсоединяют ключ, позволяющий изменять режимы работы прибора. Ключом осуществляется запуск и остановка процесса регулирования (см. рис. 2). Запуск регулятора можно программно задавать как на замыкание, так и на размыкание ключа.

Логическое состояние ключа соответствует его электрическому сопротивлению:

- «замкнуто» 0...1 кОм:
- «разомкнуто» 100 кОм...∞.

При несоблюдении этих условий возникает неопределенность состояния дополнительного входа.

3.2.4. Цифровой фильтр

Порядок установки параметров цифрового фильтра описан в п. 6.2.2

3.2.4.1. Для корректной работы прибор необходимо защищать от различных внешних воздействий и электромагнитных помех. Для этой цели рекомендуется использовать помехоподавляющий фильтр в цепи питания TPM210, а в цепи управления параллельно выходным коммутирующим контактам установить искрогасящие элементы, например RC-цепочку (см. п. 5.3.2). Кроме аппаратной защиты существует возможность использовать программный цифровой фильтр низких частот.

Цифровой фильтр подавляет помехи двух видов. 3.2.4.2. Во-первых, фильтр устраняет сильные единичные помехи (рис. 3).

Если измеренное значение T_i отличается от предыдущего T_{i-1} на величину, большую, чем значение параметра F_s (заданная «полоса фильтра»), то прибор присваивает ему значение равное $T_{i-1} + F_s$ (рис. 3). Таким образом характеристика сглаживается.

Как видно из рис. 3, малая ширина полосы фильтра приводит к замедлению реакции прибора на быстрое изменение входной величины. Поэтому при низком уровне помех или при работе с быстроменяющимися процессами рекомендуется увеличить значение полосы фильтра или отключить действие этого параметра. При работе в условиях сильных помех для устранения их влияния на работу прибора необходимо уменьшить значение в параметре «полоса фильтра».

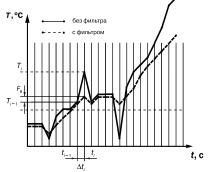
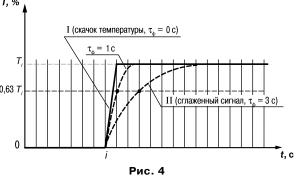
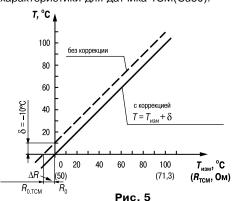



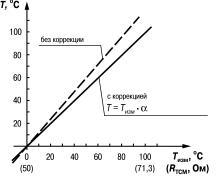
Рис. 3

3.2.4.3. Во-вторых, фильтр устраняет шумовые составляющие сигнала, осуществляя его экспоненциальное сглаживание. Основной характеристикой экспоненциального фильтра является постоянная времени au_{ϕ} – интервал, в течение которого $0.63\,T_{\phi}$ сигнал достигает 0.63 от значения каждого измерения T_{ϕ} (рис. 4).

Раздел 3

3.2.4.4. При больших значениях τ_{ϕ} фильтр вносит значительное запаздывание, но шумы заметно подавлены (кривая II на рис. 4). При τ_{ϕ} близких к нулю фильтр довольно точно отслеживает изменения



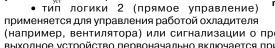

входного сигнала, но уровень шума практически не уменьшается (кривая I на рис. 4). При установке оптимальных значений параметров фильтра (подробнее см. раздел 6.2.2) задержка сигнала, вносимая фильтром, не будет оказывать отрицательного влияния на процесс регулирования, при этом сохранится эффективность подавления помех.

3.2.5. Коррекция измерений

Порядок установки параметров коррекции измерительной характеристики датчика приведен в п. 6.2.1.4 3.2.5.1. Для устранения начальной погрешности преобразования входных сигналов и погрешностей, вносимых соединительными проводами, измеренное прибором значение может быть откорректировано. В ТРМ210 есть два типа коррекции, позволяющие осуществлять сдвиг или наклон характеристики на заданную величину.

3.2.5.3. Для компенсации погрешностей датчиков при отклонении значения W_{100} от номинального каждое измеренное значение параметра $T_{\text{изм}}$ умножается на заданный пользователем поправочный коэффициент α («наклон характеристики датчика»). Коэффициент задается в пределах от 0,5 до 2,0. На рис. 6 приведен пример изменения наклона характеристики для датчика TCM(Cu50).

Рис. 6


3.2.6. Двухпозиционный регулятор

Порядок установки параметров процесса двухпозиционного регулирования приведен в п.п. 6.2.4.1 – 6.2.4.4

Прибор в режиме двухпозиционного регулирования работает по одному из представленных на рис. 7 типов логики:

Раздел 3

• тип логики 1 (обратное управление) применяется для управления работой нагревателя (например, ТЭНа) или сигнализации о том, что значение текущего измерения $T_{\rm rex}$ меньше уставки $T_{\rm ycr}$. При этом выходное устройство первоначально включается при значениях $T_{\rm rex} < T_{\rm ycr}$ — **HYS**, выключается при $T_{\rm rex} > T_{\rm ycr}$ + **HYS** и вновь включается при $T_{\rm rex} < T_{\rm ycr}$ + **HYS**, осуществляя тем самым двухпозиционное регулирование по уставке $T_{\rm ycr}$ с гистерезисом \pm **HYS**.

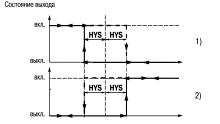


Рис. 7. Диаграммы срабатывания прибора по типам логики: 1 – обратное управление; 2 – прямое управление

(например, вентилятора) или сигнализации о превышении значения уставки. При этом выходное устройство первоначально включается при значениях $T_{\rm rek} > T_{\rm yer}$ + **HYS**, выключается при $T_{\rm rek} < T_{\rm wer}$ – **HYS**.

Задание уставки ($T_{\text{уст}}$) и гистерезиса (**HYS**) производится назначением параметров регулирования прибора.

3.2.7. ПИД-регулятор

Порядок установки параметров процесса ПИД-регулирования приведен в п.п. 6.2.4.1 – 6.2.4.3, 6.2.4.5

3.2.7.1. Общие принципы ПИД-регулирования

На выходе регулятора вырабатывается управляющий (выходной) сигнал Y_i , действие которого направлено на уменьшение отклонения E:

$$Y_{i} = \frac{1}{X_{p}} \left(E_{i} + \tau_{\pi} \frac{\Delta E_{i}}{\Delta t_{\text{M3M}}} + \frac{1}{\tau_{\text{H}}} \sum_{i=1}^{n} E_{i} \Delta t_{\text{M3M}} \right) \cdot 100 \%, \tag{1}$$

где X_p – полоса пропорциональности;

 E_{i}^{r} — разность между заданными $T_{
m yer}$ и текущими T_{i} значением измеряемой величины, или рассогласование;

τ_д – постоянная времени дифференцирования (программируемый параметр «дифференциальная постоянная ПИД-регулятора» – d);

 ΔE_{i} — разность между двумя соседними измерениями E_{i} и $E_{i-1};$

 $\Delta t_{_{ exttt{MSM}}}$ — время между двумя соседними измерениями $T_{_i}$ и $T_{_{i-1}}$;

- постоянная времени интегрирования (програмируемый параметр «интегральная постоянная ПИД-регулятора» — $\bar{\iota}$);

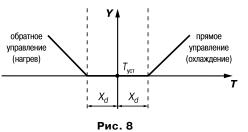
 $\sum_{i=1}^{n} \mathrm{E}_{i} \Delta t_{\mathit{u}_{\mathit{3M}}}$ – накопленная сумма рассогласований.

величины E_i , которая реагирует на мгновенную ошибку регулирования; отношение $\dfrac{E_i}{X_p}$ называется пропорциональной составляющей выходного сигнала;

Из формулы (1) видно, что при ПИД-регулировании сигнал управления зависит от: 1) разницы между текущим параметром T_i и заданным значением $T_{\rm ver}$ измеряемой

2) скорости изменения параметра $\frac{\Delta E_i}{\Delta t_{u_{3M}}}$, которая позволяет улучшить качество переходного процесса; выражение $\frac{1}{X_n au_\Lambda} \frac{\Delta E_i}{\Delta t_{u_{3M}}}$ называется дифференциальной

переходного процесса, выражение $X_p au_\Delta \Delta t_{u_{3M}}$ называетс составляющей выходного сигнала.


3) накопленной ошибки регулирования $\sum_{i=1}^n E_i \Delta t_{u_{3M}}$, которая позволяет добиться максимально быстрого достижения температуры уставки; выражение $\frac{1}{X_p} \frac{1}{\tau_{_{\rm II}}} \sum_{i=0}^n E_i \Delta t_{_{{\rm II}3M}}$ называется *интегральной составляющей* выходного сигнала;

Для эффективной работы ПИД-регулятора необходимо установить правильные для конкретного объекта регулирования значения коэффициентов $X_{_{p}}$, $\tau_{_{\Omega}}$ и $\tau_{_{\text{и}}}$, которые пользователь может определить либо в режимах АВТОНАСТРОЙКА (см. п. 7.1), или РУЧНАЯ НАСТРОЙКА (п. 7.2).

3.2.7.2. Прямое и обратное управление

При регулировании выбирают один из методов управления системой: прямое или обратное.

При прямом управлении значение выходного сигнала регулятора увеличивается с увеличением измеряемой величины (рис. 8). При обратном управлении значение выходного сигнала регулятора уменьшается с увеличением измеряемой величины. Например, в системе нагревания по мере роста температуры значение выходного сигнала уменьшается. Этот процесс имеет обратное управление, системы охлаждения - прямое управление.

3.2.7.3. Зона нечувствительности

Для исключения излишних срабатываний регулятора при небольшом значении рассогласования E_{a} для вычисления Y_{i} по формуле (1) используется уточненное значение E_{a} , вычисленное в соответствии с условиями:

если
$$|E_i| < X_{d^*}$$
 то $E_p = 0$; если $E_i > X_{d^*}$ то $E_p = E_i - X_{d^*}$ если $E_i < -X_{d^*}$ то $E_i = E_i + X_{d^*}$

где X_{a} – зона нечувствительности (см. рис. 8).

Тогда прибор будет выдавать управляющий сигнал только после того, как регулируемая величина выйдет из этой зоны. Зона нечувствительности не должна превышать необходимую точность регулирования.

Раздел 3 Устройство и работа прибора

3.2.7.4. Скорость изменения уставки

Если значение уставки необходимо изменить в процессе работы, то переход с одного значения на другое можно сгладить, задав «скорость изменения уставки».

Необходимая скорость оперативно задается как значение параметра и5Р. При и5Р, отличном от 0, уставка меняется не скачком, а по линейному закону с заданной скоростью.

В качестве начальной уставки принимается текущее значение регулируемого параметра на момент включения регулятора, тогда каждую минуту уставка регулятора изменяется на величину, заданную в этом параметре.

При использовании ограничения скорости изменения уставки возрастает время выхода на рабочий режим. Поэтому, если задержка приводит к неудовлетворительным результатам, нужно увеличить значение этого параметра или отключить его действие.

3.2.7.5. Ограничение выходного сигнала

В ТРМ210 можно установить следующие виды ограничения выходного сигнала:

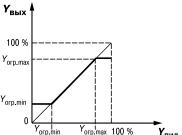
– максимальный $Y_{orn,max}$ и минимальный $Y_{orn,min}$ (**puc. 9**).

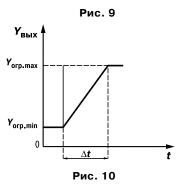
– скорости изменения
$$v_{
m orp} = rac{Y_{
m orp.max} - Y_{
m orp.min}}{\Delta t}$$
 (рис. 10), используемые для

ограничения управляющего воздействия на объект.

3.2.7.6. Период следования управляющих импульсов

При использовании ПИД-регулятора с выходным устройством ключевого типа необходимо установить период управляющих импульсов.


Более высокая частота обеспечивает быстроту реакции регулятора на внешние возмущения. В идеале частота импульсов управления должна совпадать с частотой опроса датчика. При использовании электронных ключей (тиристоров, симисторов) рекомендуется устанавливать значение T_{ci} (период следования управляющих импульсов) равным 1...2 с.


Устройство и работа прибора

Раздел 3

Увеличение периода следования управляющих импульсов позволяет при использовании электромагнитных реле или пускателя продлить срок службы силовых контактов, но может ухудшить качество регулирования.

Автонастройка позволяет определять значение T_{cs} , которое не будет оказывать отрицательного влияния на работу системы.

Раздел 3

Устройство и работа прибора

3.2.8. Устройства аварийной сигнализации

Порядок установки параметров устройств аварийной сигнализации описан в п. 6.2.7

3.2.8.1. Общие сведения

Для более эффективного контроля за процессами регулирования в приборе имеется логическое устройство, работающее по принципу компаратора, а также устройство определения обрыва контура «LBA».

Оба устройства управляют различными сигнализирующими устройствами, например: сиренами, лампами, блокировочными выключателями, блоками принудительного (аварийного) охлаждения или нагревания и т.п.

Сигналы аварийной сигнализации коммутируются через схему «ИЛИ» и могут управлять только выходным устройством ключевого типа.

О срабатывании логического устройства свидетельствует засветка соответствующего светодиода на передней панели (**AL** или **LBA**).

3.2.8.2. Компаратор

В зависимости от системы регулирования пользователь может задать параметры срабатывания компаратора, сигнализирующего о выходе регулируемой величины за допустимые пределы. В приборе заложено 11 типов логики срабатывания компаратора (**рис. 11**). Кроме того, пользователь задает порог срабатывания компаратора X и гистерезис Δ для устранения ненужных срабатываний из-за колебаний контролируемой величины вокруг порогового значения.

Компаратор сигнализирует об аварийной ситуации, при этом регулятор продолжает работать.

Раздел 3

Устройство и работа прибора

Функция блокировки первого срабатывания позволяет исключить включение сигнализации при подаче питания.

Использование этой функции имеет смысл, например, при установке в системе нагревания, поскольку, как правило, значение измеряемой величины в этой системе изначально находится ниже уставки.

Рассмотрим пример сигнализации с типом логики 5. На рис. 12 показаны диаграммы работы компаратора без блокировки первого срабатывания, тип логики 1 (рис. 12, б), и с блокировкой – тип логики 5 (рис. 12, в).

При использовании типа логики 1 происходит нежелательное срабатывание компаратора (заштрихованная площадь на рис. 12, б) на этапе *I*, когда реально аварийной ситуации нет. При использовании типа логики 5 нежелательного срабатывания не происходит.

После включения прибора выход компаратора будет находиться в состоянии «выкл» до первого превышения установленного значения (*I* этап), и только когда измеряемая величина снова примет значение ниже предела отклонения, выход компаратора впервые перейдет в состояние «включено» – сигнализация сработает.

Параметр <i>RLE</i>	Тип сигнализации	Состояние выходного устройства			
00*	Сигнализация выключена				
<i>0 1</i>	Измеренная величина выходит за заданный диапазон	вкл. — — — — — — — — — — — — — — — — — — —			
02	Измеренная величина превышает уставку <i>5P</i> регулятора на X	вкл. — — — — — — — — — — — — — — — — — — —			
03	Измеренная величина меньше уставки 5/Р регулятора на X	ВКЛ. → Х БР			
DЧ	Измеренная величина находится в заданном диапазоне	вкл. <u>х х</u> выкл. <u>Д</u> 5Р <u>Д</u>			
<i>0</i> 5	Анал. п. 1 с блокировкой 1-го срабатывания				
05	Анал. п. 2 с блокировкой 1-го срабатывания				
7	Анал. п. 3 с блокировкой 1-го срабатывания				
08	Измеренная величина превышает X по абсолютному значению	ВКЛ. — X ВЫКЛ. — Д			
09	Измеренная величина меньше X по абсолютному значению	ВКЛ. — X ВЫКЛ. — О			
Ю	Анал. п. 8 с блокировкой 1-го срабатывания				
11	Анал. п. 9 с блокировкой 1-го срабатывания				

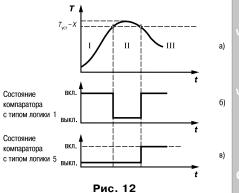

X — порог срабатывания, параметр RL - d (группа $L \cap L$); Δ — гистерезис, параметр RL - H

Рис. 11

3.2.8.3. Сигнализация об обрыве в контуре регулирования

3.2.8.3.1. Действие сигнализации основано на том, что если значение регулируемого параметра не меняется в течение определенного времени при подаче максимального (минимального) управляющего воздействия, то в контуре регулирования произошел обрыв, и тогда на соответствующий выход выдается сигнал. Работа сигнализации об обрыве контура определяется двумя параметрами: «время диагностики обрыва контура» и «ширина зоны диагностики обрыва контура».

3.2.8.3.2. Устройство выдает сигнал тревоги, если по истечении времени диагностики обрыва контура измеренное значение не изменилось:

- для процесса нагрева при максимальном выходном сигнале не увеличилось, при минимальном – не уменьшилось:
- для процесса охлаждения при максимальном выходном сигнале не уменьшилось, при минимальном – не увеличилось.

При этом регулятор отключается.

3.2.8.3.3. Приведем пример срабатывания устройства диагностики обрыва контура (рис. 13).

В точке **A** нагреватель вышел из строя, и температура начинает уменьшаться (**puc.13**, **a**). Регулятор увеличивает выходной сигнал (**puc.13**, **6**), контролируя отклик системы. Поскольку температура продолжает уменьшаться, рассогласование растет, и значение Y достигает 100 %. В момент достижения Y = 100 % (точка **B**) прибор начинает отсчет «**времени** диагностики обрыва контура» Δt .

Если по истечении этого времени температура продолжает уменьшаться, сигнализация срабатывает (кривая I на **рис. 13,** a). Если температура стала расти, но за время Δt изменение температуры не превысило «ширину зоны диагностики обрыва контура»

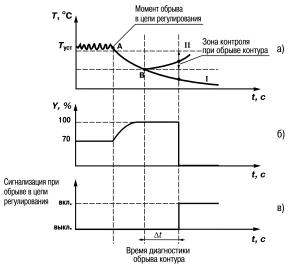


Рис. 13

(кривая II на рис. 13, a), сигнализация также срабатывает (рис. 13, в). Об аварийной ситуации сигнализирует свечение светодиода LBA.

3.2.9. Выходные устройства прибора

Раздел 3

Порядок установки параметров ВУ прибора описан в п. 6.2.3

Выходные устройства (ВУ) предназначены для передачи управляющего сигнала на исполнительные механизмы, либо для передачи данных на регистрирующее устройство.

3.2.9.1. Ключевое ВУ – электромагнитное реле, транзисторная оптопара, оптосимистор, выход для управления твердотельным реле – используются либо для управления исполнительным механизмом при регулировании, либо для управления сигнализирующим устройством.

В режиме ПИД-регулирования осуществляется импульсное управление по принципу ШИМ с периодом следования импульсов $T_{\rm cr}$ и длительностью каждого импульса

$$D_i = Y_i \times T_{c_{\pi}}$$
.

ВУ ключевого типа используется для управления (включения/выключения) нагрузкой либо непосредственно, либо через более мощные управляющие элементы, такие как пускатели, твердотельные реле, тиристоры или симисторы.

- 3.2.9.2. ВУ аналогового типа используется либо для осуществления аналогового управления при ПИД-регулировании, либо для выдачи сигналов на устройство, регистрирующее контролируемую величину в течение процесса регулирования.
- 3.2.9.2.1. ВУ аналогового типа в приборе TPM210 это цифроаналоговый преобразователь, который формирует токовую петлю 4...20 мА или напряжение 0...10 В и, как правило, используется для управления электронными регуляторами мощности.

При **аналоговом управлении** выходной сигнал (ток/напряжение) ЦАП пропорционален значению выходного сигнала регулятора.

3.2.9.2.2. При работе в режиме **регистратора** прибор сравнивает величину на входе с заданными значениями и выдает на соответствующее ВУ аналоговый сигнал в виде тока

4...20 мА либо напряжения 0...10 В, который можно подавать на самописец или другое регистрирующее устройство (подробнее см. п. 6.2.3.2).

К регистрирующим устройствам относятся: самописцы, блоки сбора данных на основе персональных или промышленных компьютеров, другие контроллеры с возможностью записи или дальнейшей передачи информации.

3.2.9.3. Особенности подключения и использования выходных устройств приведены в п. 5.3.2.

3.2.10. Интерфейс связи RS-485

Интерфейс связи предназначен для включения прибора ТРМ210 в сеть, организованную по стандарту RS-485. Использование прибора в сети RS-485 позволяет осуществлять следующие функции.

- 1. Сбор данных об измеряемых величинах и протекании процессов регулирования в системе SCADA.
 - 2. Установка параметров прибора с помощью программы-конфигуратора.
- 3. Дистанционное управление процессом регулирования и автонастройки с помощью программы-конфигуратора, работающей в среде Windows.

RS-485 является широко распространенным в промышленности стандартом интерфейса, обеспечивает создание сетей с количеством узлов (точек) до 256 и передачу данных на расстояние до 1200 м. При использовании повторителей количество подключенных узлов и расстояние передачи может быть увеличено. Для соединения приборов применяется экранированная витая пара проводов, к которым предъявляются следующие требования: сечение не менее 0,2 мм² и погонная емкость не более 60 пФ/м.

Все приборы в сети соединяются в последовательную шину (рис. 14). Для качественной работы приемопередатчиков и предотвращения влияния помех линия связи должна иметь на концах согласующий резистор сопротивлением $R_{corn} = 120 \, \text{Om}$,

Раздел 3

Устройство и работа прибора

подключаемый непосредственно к клеммам прибора (см. рис. 14).

Подключение прибора к персональному компьютеру осуществляется через адаптер интерфейса RS-485↔RS-232, в **в** Д—Л качестве которого может быть использован адаптер ОВЕН АСЗ.

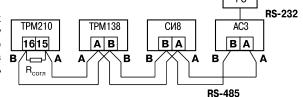


Рис. 14

Примечания

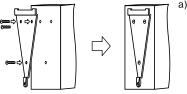
- 1. ОВЕН AC3 имеет согласующий резистор сопротивлением $R_{corr} = 120$ Ом внутри.
- 2. С описанием протокола обмена, списком параметров, программой пользователь может ознакомиться на сайте www.owen.ru. Обмен может осуществляться с одной из скоростей стандартного ряда: 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200 бит/с.

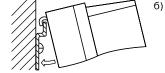
- 4.1. По способу защиты от поражения электрическим током прибор соответствует классу 0 по ГОСТ 12.2.007.0-75.
- 4.2. При эксплуатации, техническом обслуживании и поверке необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».
- 4.3. Открытые контакты клеммника прибора при эксплуатации находятся под напряжением величиной до 250 В, опасным для человеческой жизни. Любые подключения к прибору и работы по его техническому обслуживанию производить только при отключенном питании прибора и исполнительных механизмов.
- 4.4. Не допускается попадание влаги на контакты выходного разъема и внутренние электроэлементы прибора. Запрещается использование прибора в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.
- 4.5. Подключение, регулировка и техобслуживание прибора должны производиться только квалифицированными специалистами, изучившими настоящее руководство по эксплуатации.

ВНИМАНИЕ! Соблюдение правил монтажа (п. 5) обязательно.

5.1. Монтаж прибора на объекте

Раздел 5


- 5.1.1. Проверить состояние корпуса: корпус не должен иметь механических повреждений, лицевая панель - царапин, трещин, грязных пятен.
- 5.1.2. Подготовить на щите управления место для установки прибора в соответствии с прил. А.
- 5.1.3. Установить прибор на щите управления, используя для его крепления монтажные элементы, входящие в комплект поставки прибора.


Установка приборов настенного крепления

1. Закрепить кронштейн тремя винтами М4 на поверхности, предназначенной для установки прибора (см. прил. A и рис. 15. a).

Примечание. Винты для крепления кронштейна не входят в комплект поставки.

- 2. Зацепить крепежный уголок на задней стенке прибора за верхнюю кромку кронштейна (рис. 15, б).
- 3. Прикрепить прибор к кронштейну винтом M4×35 из комплекта поставки (рис. 15, в).

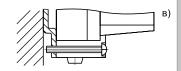


Рис. 15

a)

Раздел 5

Подготовка прибора к работе

Установка приборов щитового крепления

- 1. Вставить прибор в специально подготовленное отверстие на лицевой панели щита (см. *прил*. А и **рис. 16, а**).
- 2. Вставить фиксаторы из комплекта поставки в отверстия на боковых стенках прибора (рис. 16, б).
- 3. С усилием завернуть винты M4×35 в отверстиях каждого фиксатора так, чтобы прибор был плотно прижат к лицевой панели щита.

5.2. Монтаж внешних связей

5.2.1. Общие указания

5.2.1.1. Подготовить кабели для соединения прибора с датчиками, исполнительными механизмами и внешними устройствами, а также с источником питания. Для обеспечения надежности электрических соединений рекомендуется использовать кабели с медными многопроволочными жилами, концы которых перед подключением следует тщательно зачистить и облудить. Зачистку жил кабеля необходимо выполнять с таким расчетом, чтобы их оголенные концы после подключения к прибору не выступали за пределы клеммника. Сечение жил кабеля не должно превышать 1 мм².

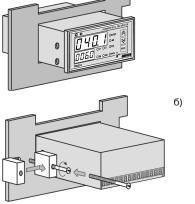


Рис. 16

ымника. Сечение жил каселя не должно превышатьт мм . 5.2.2. Указания по монтажу для уменьшения электромагнитных помех

5.2.2.1. При прокладке сигнальных линий, в том числе линий «прибор – датчик», следует выделить их в самостоятельную трассу (или несколько трасс). Трассы располагают отдельно

от силовых кабелей, а также от кабелей, создающих высокочастотные и импульсные помехи.

ВАЖНО! Трассы следует планировать таким образом, чтобы длина сигнальных линий была минимальной.

5.2.2.2. Обеспечить надежное экранирование сигнальных линий. В качестве экранов могут быть использованы как специальные кабели с экранирующими оплетками, так и заземленные стальные трубы подходящего диаметра. Экраны кабелей следует подключить к заземленному контакту в щите управления.

Рабочий спай термопары должен быть электрически изолирован от внешнего оборудования!

5.2.2.3. Прибор следует устанавливать в металлическом шкафу, внутри которого не должно быть силового оборудования. Корпус шкафа должен быть заземлен.

5.2.3. Указания по монтажу для уменьшения помех, возникающих в питающей сети

- 5.2.3.1. Подключение прибора следует производить к сетевому фидеру 220 В 50 Гц, не связанному непосредственно с питанием мощного силового оборудования. Во внешней цепи рекомендуется установить выключатель питания, обеспечивающий отключение прибора от сети и плавкие предохранители на ток 0,5 А.
- 5.2.3.2. При монтаже системы, в которой работает прибор, следует учитывать правила эффективного заземления:
 - все заземляющие линии прокладывать по схеме «звезда», при этом необходимо обеспечить хороший контакт с заземляемым элементом;
 - заземляющие цепи должны быть выполнены как можно более толстыми проводами.
- 5.2.3.3. Рекомендуется устанавливать фильтры сетевых помех в линиях питания прибора.

Подготовка прибора к работе

Раздел 5

5.2.3.4. Рекомендуется устанавливать искрогасящие фильтры в линиях коммутации силового оборудования.

5.3. Подключение прибора

5.3.1. Общие указания

- 5.3.1.1. Подключение прибора к сети питания и исполнительным устройствам управления следует производить по схемам, приведенным в прил. Б, соблюдая изложенную ниже последовательность действий:
 - 1) подключить прибор к исполнительным механизмам и внешним устройствам, а также к источнику питания;
 - 2) подключить линии связи «прибор датчики» к первичным преобразователям;
 - 3) подключить линии связи «прибор датчики» к входам прибора.
- 5.3.1.2. Схемы подключения датчиков и исполнительных устройств к приборам различных модификаций приведены в прил. Б. Характеристики линии соединения прибора с датчиком приведены в табл.8.

ВНИМАНИЕ!

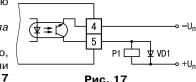
- 1. Клеммные соединители прибора, предназначенные для подключения к сети питания и внешнего силового оборудования, рассчитаны на максимальное напряжение 250 В. Во избежание электрического пробоя или перекрытия изоляции работа прибора при напряжении выше 250 В запрещена. Например, при работе в составе трехфазной сети 380/220 В недопустимо подключение к соответствующим контактам из группы 1...8 разных фаз напряжения питания.
- 2. Для защиты входных цепей прибора от возможного пробоя зарядами статического электричества накопленного на линиях связи «прибор – датчики» перед подключением к клеммнику прибора их жилы следует на 1...2 с соединить с винтом заземления щита.

5.3.2. Подключение внешних устройств управления

Цепи Выходных элементов, как ключевых, так и аналоговых, имеют гальваническую

Раздел 5

Подготовка прибора к работе


Таблица 8

Тип датчика	Длина линии	Сопротивление линии	Исполнение линии	
Термопреобразователь сопротивления	не более 100 м	не более 15,0 Ом	Трехпроводная, провода равной длины и сечения	
Термопара	не более 20 м	не более 100 Ом	Термоэлектродный кабель (компенсационный)	
Унифицированный сигнал постоянного тока	не более 100 м	не более 100 Ом	Двухпроводная	
Унифицированный сигнал постоянного напряжения	не более 100 м	не более 5,0 Ом	Двухпроводная	

изоляцию от схемы прибора. Исключение составляет выход «Т» для управления внешним твердотельным реле. В этом случае гальваническую изоляцию обеспечивает само твердотельное реле.

5.3.2.1. Подключение нагрузки к ВУ типа «транзисторная оптопара» («К»)

Транзисторная оптопара применяется, как правило, для управления низковольтным электромагнитным или твердотельным реле (до 50 В постоянного тока). На рис. 17

приведена схема включения для ВУ1. Во избежание выхода из строя транзистора из-за большого тока самоиндукции параллельно обмотке реле Р1 необходимо устанавливать диод VD1, рассчитанный на ток 1A и напряжением 100 В.

5.3.2.2. Подключение нагрузки к ВУ типа «симисторная оптопара» («С»)

Оптосимистор включается цепь управления мощного симистора через ограничивающий резистор R1 (для ВУ1 см. рис. 18). Значение сопротивления резистора определяет величина тока управления симистора.

Оптосимистор может также управлять парой встречно-параллельно включенных тиристоров VS1 и VS2 (для ВУ1 см. рис. 19). Для предотвращения пробоя тиристоров из-за высоковольтных скачков напряжения в сети к их выводам рекомендуется подключать фильтрующую RC-цепочку (R2C1).

5.3.2.3. Подключение нагрузки к ВУ типа «ЦАП 4...20 мА» («И»)

Для работы ЦАП 4...20 мА используется внешний источник питания постоянного тока (для ВУ1 см. рис. 20), номинальное значение напряжения которого U_{\perp} рассчитывается следующим образом:

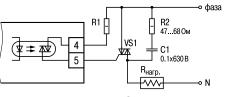


Рис. 18

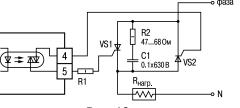
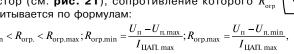


Рис. 19

- номинальное напряжение источника питания, В:

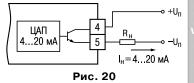

> - минимально допустимое напряжение источника питания. В:

- максимально допустимое напряжение

источника питания. В:

сопротивление нагрузки ЦАП, Ом.

Если по какой-либо причине напряжение источника питания ЦАП, находящегося в распоряжении пользователя, превышает расчетное значение $U_{_{\mathrm{n}\;\mathrm{max}}}$, то последовательно с нагрузкой необходимо включить ограничительный резистор (см. **рис. 21**), сопротивление которого $R_{\rm cm}$ рассчитывается по формулам:



– номинальное значение ограничительного резистора, кОм;

- минимально допустимое значение ограничительного резистора, кОм; - максимально допустимое значение ограничительного резистора, кОм;

максимальный выходной ток ЦАП, мА.

ВНИМАНИЕ! Напряжение источника питания ЦАП не должно превышать 36 В.

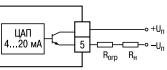


Рис. 21

Подготовка прибора к работе

Раздел 5

5.3.2.4. Подключение нагрузки к ВУ типа «ЦАП 0...10B» («У»)

источник питания постоянного тока (для ВУ1 см. рис. 22), номинальное значение напряжения которого U находится

Для работы ЦАП 0...10 В используется внешний в диапазоне 15...32 В.

Рис. 22

Сопротивление нагрузки $R_{..}$, подключаемой к ЦАП, должно быть не менее 2 кОм.

ВНИМАНИЕ! Напряжение источника питания ЦАП не должно превышать 36 В.

5.3.2.5. Подключение к ВУ для управления твердотельным реле «Т»

Выход «Т» имеет два состояния с низким и высоким уровнем напряжения. В приборе используются выходы. выполненные на основе транзисторного ключа n-p-n-типа (для ВУ1 см. рис. 23), в которых низкий логический уровень соответствует напряжениям 0...1 В и высокий уровень напряжениям 4...6 В.

Данные выходы используются для подключения твердотельных реле, рассчитанных на управление постоянным напряжением 4...6 В с током управления не более 100 мА. Внутри

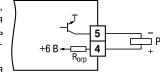


Рис. 23

выходного элемента устанавливается ограничительный резистор $R_{\rm m}$ номиналом 100 Ом.

5.3.3. Подключение датчиков

5.3.3.1. Подключение термопреобразователей сопротивления

В приборах ТРМ210 используется трехпроводная схема подключения термопреобразователей сопротивления. К одному из выводов термопреобразователя подсоединяются два провода, а третий подключается к другому выводу (см. рис. Б.1). Такая

Раздел 5

Подготовка прибора к работе

схема при соблюдении условий равенства сопротивлений всех трех проводов позволяет скомпенсировать их влияние на измерение температуры.

Термопреобразователи сопротивления могут подключаться к прибору и по двухпроводной схеме, но при этом отсутствует компенсация сопротивления соединительных проводов и поэтому может наблюдаться некоторая зависимость показаний прибора от колебаний температуры проводов. При использовании двухпроводной схемы необходимо при подготовке прибора к работе выполнить действия, указанные в прил. В.

5.3.3.2. Подключение термоэлектрических преобразователей (термопар)

В приборе предусмотрена схема автоматической компенсации температуры свободных концов термопары «холодного спая». Датчик температуры «холодного спая» установлен рядом с присоединительным клеммником.

Подключение термопар к прибору должно производиться с помощью специальных компенсационных (термоэлектродных) проводов, изготовленных из тех же самых материалов, что и термопара. Допускается также использовать провода из металлов с термоэлектрическими характеристиками, которые в диапазоне температур 0...100 °C аналогичны характеристикам материалов электродов термопары. При соединении компенсационных проводов с термопарой и прибором необходимо соблюдать полярность (см. рис. Б.1). При нарушении указанных условий могут возникать значительные погрешности при измерении.

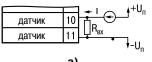
Во избежание влияния помех на измерительную часть прибора линию связи прибора с датчиком рекомендуется экранировать. В качестве экрана может быть использована заземленная стальная труба.

ВНИМАНИЕ! Запрещается использовать термопары с неизолированным рабочим спаем.

Подготовка прибора к работе

Раздел 5

5.3.3.3. Подключение датчиков, имеющих унифицированный выходной сигнал тока или напряжения


5.3.3.3.1. Многие первичные преобразователи различных физических величин (тензодатчики, термопары, датчики влажности и т.п.) оснащены нормирующими преобразователями этих величин в унифицированные значения постоянного тока

0...5 MA, 0...20 MA, 4...20 MA. При подключении этих датчиков к ТРМ210 необходимо использовать внешний нагрузочный резистор, через который будет протекать ток нормирующего преобразователя, на котором прибор и будет измерять падение напряжения. Резистор должен быть прецизионным (типа С2-29В, С5-25 и т.п., мощностью не менее 0,25 Вт, сопротивлением 100 Ом \pm 0,1 %) и высокостабильным во времени и по температуре (ТКС не хуже 25×10-6 1/°C). Для питания нормирующих преобразователей необходим дополнительный источник постоянного напряжения.

На рис. 24,а приведена двухпроводная схема подключения для датчиков с унифицированным выходным сигналом тока

4...20 мА, а на **рис. 24,6** – трехпроводная схема подключения для датчиков с сигналом тока 0...5 (20) мА. Значение этого напряжения $U_{\rm u}$ указывается в технических характеристиках нормирующего преобразователя и, как правило, лежит в диапазоне 18...36 В.

5.3.3.3.2. Подключение датчиков с унифицированным сигналом постоянного напряжения 0...1 В и -50...+50 мВ следует производить в соответствии со схемой на рис. Б.1.

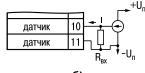


Рис. 24

Раздел 5

Подготовка прибора к работе

датчик

датчик

Примечание. ТРМ210 может использоваться также как вольтметр с диапазоном 0...1 В или милливольтметр -50...+50 мВ (рис. 25).

5.4. Включение и опробование прибора

- 5.4.1. После подключения необходимых связей включить питание прибора.
- 5.4.2. Если прибор исправен, засвечиваются все индикаторы Рис. 25 и светодиоды; выходные устройства находятся в состоянии «Выключено» и через 2 секунды прибор переходит в режим РАБОТА, начиная опрос входного датчика и формирование управляющих выходных сигналов.
- 5.4.3. При наличии некоторых неисправностей прибор выводит на верхний цифровой индикатор следующие сообщения:
 - Ест. 5 ошибка на входе;
 - **Ег.БЧ** ошибка процессора;
 - *Er.Яd* ошибки внутреннего преобразования.

Более подробное описание и способы устранения этих ошибок, а также другие неисправности приведены в прил. Д.

- 5.4.4. Перед началом эксплуатации необходимо:
 - запрограммировать прибор (см. п. 6);
 - если предполагается использовать ПИД-регулятор, провести его настройку (п. 7).

Раздел 6

Программирование прибора

6.1. Общие сведения

6.1.1. После первого включения и опробования прибора необходимо отключить питание исполнительных устройств, после чего задать нужные значения программируемых параметров.

Программируемые параметры задаются пользователем при программировании и сохраняются при отключении питания в энергонезависимой памяти.

6.1.2. Основные параметры прибора ТРМ210 объединены в 5 групп: LuaP, Loan и **Голи**, составляющих меню прибора (рис. 26). Полный список программируемых параметров приведен в прил. Г.

В группу Горин включены параметры, управляющие запуском регулирования, включением автонастройки, а также уставка.

Параметры обмена Дополнительные параметры по RS-485 ПИД-регулятором ñEnU ñEnU ñEnU ñEnU ñEnU Rdu (**3**). _ init **⊗** -[Conn | 🗞 🛶 ୲ଊ୷ (IPOF.) 26. In-E uSP **bP5** 25. 1 30.0 115.2 (RPOF) > 6 c (IPOF) > 6 c (IPOF) > 6 c (IPOF) > 6 c (IPOF) > 6 c Рис. 26

- В группу спсв включены параметры настройки входа прибора, выходных устройств, устройств сигнализации.
 - В группу Яди включены параметры дополнительных настроек регулятора.
 - В группу **Голл** включены параметры настройки интерфейса RS-485.
 - В группу *LnR* включены параметры ручного управления ПИД-регулятором.

Примечание. Существует еще одна группа служебных параметров, вход в которую осуществляется через код доступа (см. п. 6.2.9).

6.1.3. Переход между заголовками групп меню осуществляется кнопками 🙊 (к следующему) 😵 и (к предыдущему). Переход к первому параметру каждой группы осуществляется кратким нажатием кнопки (по), а возврат в заголовок группы (из любого параметра группы) – длительным (≥ 3 с) нажатием кнопки (РОГ).

Для входа в специальные режимы работы прибора используются комбинации кнопок:

(пог) + 🔊 + 🤡 – для перехода к установке кодов доступа, при этом на индикаторе

высвечивается сообщение

В режиме ПРОГРАММИРОВАНИЕ:

- (NPOF) + (A)
- для отображения и редактирования дробной части значения программируемого параметра;
- (IPOF.) + 😵
- для возврата в режим отображения и редактирования целой части значения программируемого параметра.

Программирование прибора

6.2. Порядок программирования

6.2.1. Установка параметров основного (измерительного) входа

Работа измерительного входа описана в п. 3.2.2

Находясь в режиме РАБОТА, нажать кнопку (прот) и удерживать не менее 3 с, переходим в меню **LuōP**.

Нажав кнопку (🔊), переходим в меню ட்டை Е.

6.2.1.1. Код типа датчика

Задать значение параметра сп-ь в соответствии с используемыми типами датчиков. Коды термопреобразователей сопротивления начинаются с латинской строчной буквы *с* (resistor – сопротивление), после которой стоит значение W_{100} . Для датчиков с R_0 = 100 Ом в коде после буквы r стоит точка. Например, код r.385 соответствует датчику ТСП(Pt100) с $W_{100} = 1,3850$. Перед наименованием градуировки – тире (например, $r - 2 l = TC\Pi$ гр. 21).

Коды термопар начинаются с прописной латинской буквы Е (ЭДС), после которой стоит обозначение HCX термопары. Например, *E_R2* соответствует термопаре TBP(A-2).

Коды датчиков с выходным сигналом в виде тока и напряжения начинаются с букв (ток) и U(напряжение), соответственно, после которых указаны границы диапазона выходного сигнала. Например, 20_5 соответствует датчику с выходным сигналом постоянного тока 0...5 мА.

6.2.1.2. Установка точности вывода температуры

При использовании термопреобразователей сопротивления и термопар возможно установить желаемую точность отображения измеренной температуры на индикаторе. Для этого необходимо задать параметр **dPŁ**.

Примечание. При использовании датчиков с унифицированным сигналом этот параметр для программирования недоступен.

При работе с температурами выше 1000 °C рекомендуется устанавливать значение параметра, равное 0, с температурами ниже 1000 °C – равное 1.

6.2.1.3. Установка диапазона измерения

При использовании датчиков с унифицированным выходным сигналом тока или напряжения необходимо провести настройку диапазона измерения, задав значения параметров:

Р – положение десятичной точки;

īn-L – нижняя граница диапазона измерения;

го-Н – верхняя граница диапазона измерения.

Примечание. При использовании термопреобразователей сопротивления и термопар эти параметры на индикаторе не высвечиваются.

Параметры \bar{L}_{n} -L, \bar{L}_{n} -H могут принимать любые значения, в том числе \bar{L}_{n} -L > \bar{L}_{n} -H:

от –1999 до 9999 при **дР** = 0; от –19.99 до 99.99 при **dP** = 2;

от –199.9 до 999.9 при **dP** =1; от –1.999 до 9.999 при **dP** = 3.

ВНИМАНИЕ! При установке значений со-1 > со-Н необходимо задать новые значения параметрам **5L-L; 5L-H** (см. п. 6.2.4.1) и **Ял-L**; **Ял-H** (п. 6.2.3.2).

Значение параметра **дР** влияет на отображение измеренной величины. Для каждого типа датчика может быть установлено свое значение этого параметра, которое будет сохранено в памяти прибора для данного типа датчика. Поэтому при переходе от датчиков с унифицированными сигналами со своим установленным значением, например, **дР** = 0,2 или 3 к датчикам TC и TП, у которых по умолчанию **dP** = 1, и наоборот, значение положения десятичной точки автоматически изменяется, что может привести к изменению значения уставки и других параметров, имеющих одни и те же единицы измерения, что и измеряемая величина.

Для получения более высокой разрешающей способности следует устанавливать большее значение **дР**. Например, при использовании датчика давления с диапазоном 0...15 атмосфер и выходным сигналом тока 0...20 мА наилучшие результаты могут быть получены со следующими значениями параметров: $\vec{L} n - L = 0.00$ и $\vec{L} n - H = 15.00$ при $d\vec{P} = 2$.

6.2.1.4. Коррекция измерительной характеристики

Коррекция измерений, осуществляемая прибором, описана в п. 3.2.5

Коррекция измерений производится прибором после задания необходимых значений параметров **5H** – сдвиг измерительной характеристики датчика, **PU** – наклон измерительной характеристики датчика.

Параметр **5H** допускается изменять в диапазоне -50,0...+50,0 °C для температурных датчиков (ТСП, ТСМ и термопар), -500...500 — для аналоговых.

Параметр **Р** допускается изменять в пределах от 0.500 до 2.000.

ВНИМАНИЕ!

- 1. Необходимость осуществления коррекции измерения выявляется после проведения поверки используемых датчика и прибора.
- 2. При подключении термопреобразователя сопротивления по двухпроводной схеме параметр **5H** задавать обязательно. Определение значения параметра **5H** производится по методике, приведенной в *прил. В*.

6.2.2. Установка параметров цифрового фильтра

Работа цифрового фильтра описана в п. 3.2.4

- 6.2.2.1. Настройка цифрового фильтра измерений производится путем установки двух параметров Fb полоса цифрового фильтра и $\bar{c}nF$ постоянная времени цифрового фильтра. Оптимальное значение постоянной времени цифрового фильтра $\bar{c}nF$ определяется при проведении автонастройки (см. разд. 7.1).
- 6.2.2.2. Значение **съ** допускается устанавливать в диапазоне 0...999 с, при **съ** = 0 фильтрация методом экспоненциального сглаживания отсутствует.

Значение **Fb** устанавливается в диапазоне 0...9999 °C/с для температурных датчиков (ТСП, ТСМ и термопар), 0...9999 – для аналоговых. При **Fb** = 0 «ограничитель единичных помех» выключен.

6.2.3. Установка параметров ВУ прибора

Работа ВУ прибора описана в п. 3.2.9

6.2.3.1. В приборе TPM210 на ВУ1 может быть подано только значение выходного сигнала регулятора, на ВУ2 – сигнал компаратора, устройства «LBA» (для ВУ2 ключевого типа) или значение измеренной величины (для ВУ2 аналогового типа).

Функции выходов ТРМ210 приведены в табл. 9.

Таблица 9

				•
Модификация	ВУ1		ВУ2	
МОДИФИКация	Тип устройства	Функция	Тип устройства	Функция
TPM210-X.PP	э/м реле	регулирование	э/м реле	сигнализация
ТРМ210-Х.РИ	э/м реле	то же	ЦАП 420 мA	регистрация
TPM210-X.KP	транз. оптопара		э/м реле	сигнализация
ТРМ210-Х.КИ			ЦАП	регистрация
TPM210-X.CP	симист. оптопара		э/м реле	сигнализация
ТРМ210-Х.СИ			ЦАП	регистрация
ТРМ210-Х.ИР	ЦАП 420 мA		э/м реле	сигнализация
ТРМ210-Х.ИИ			ЦАП	регистрация
TPM210-X.CC	симист. оптопара	регулирование	симист. оптопара	сигнализация
TPM210-X.KK	транз. оптопара	регулирование	транз. оптопара	сигнализация
TPM210-X.TP	выход для управления	регулирование	э/м реле	сигнализация
	твердотельным реле			
ТРМ210-Х.УР	ЦАП 010 B	регулирование	э/м реле	сигнализация
TPM210-X.C3	3 симист. оптопары	регулирование	_	-

6.2.3.2. Настройка диапазона регистрации

При использовании аналогового ВУ2 как регистратора необходимо определить диапазон работы ВУ2 путем установки параметров:

регистрации $I_{min.} = 4 \text{ MA}$ нижний диапазон регистрации

Рис. 27

нижняя граница диапазона регистрации;

Ял-Н – верхняя граница диапазона регистрации.

Примечание. Для ВУ ключевого типа эти параметры не появляются.

Допустимо задавать любые Измеренное соотношения этих параметров. значение $T_{\text{тек}}$ кроме $R_{n} - L = R_{n} - H$: так как при этом выходе появляется неопределенный сигнал. Графики работы аналогового измерительного выхода приведены на рис. 27, а (для Яп- $L < R_0 - H$) и на рис. 27, б (для $R_0 - H$) L > Rn-H).

Диапазон регистрации всегда задается в единицах измерения входной величины. Для температурных датчиков значение Ттек (ТСМ, ТСП, термопара) диапазон установки значений параметров Ял-L и Ял-Н определяется диапазоном измерения для НСХ данного датчика. Для датчиков с унифицированным сигналом диапазон установки значений параметров *П*п-L и *П*п-H определяется установленными значениями параметров *с*п-L и *с*п-H.

6.2.4. Установка параметров процесса регулирования

Работа двухпозиционного и ПИД-регулятора описаны в п.п. 3.2.6, 3.2.7

6.2.4.1. Задание уставки регулируемой величины

Раздел 6

6.2.4.1.1. Изменение уставки осуществляется изменением значения параметра *57*.

6.2.4.1.2. Диапазон установки **5Р** ограничивается параметрами **5L-L** и **5L-H**.

5L-L – нижняя граница диапазона задания уставки;

5L-**H** – верхняя граница диапазона задания уставки.

Параметры 51 - L, 51 - Н могут принимать значения от нижней до верхней границы диапазона измерения для используемого датчика.

Примечание. Для термопар, у которых верхняя граница диапазона измерения превышает 1000 °C, параметры 5P, 5L-L, 5L-H, Rn-L, Rn-Hмогут иметь значения более 1000 °C. В этом случае эти значения выводятся на нижний индикатор без младшего разряда, на индикаторе отображается целое значение [1000].

Для отображения и редактирования десятых долей необходимо одновременно нажать (🕪) + (🔊), после чего на индикаторе отобразится [- - - . 0].

Изменение десятых долей осуществляется обычным образом – кнопками (🔊) или 😵).

Для возврата к целой части необходимо одновременно нажать кнопки (прог.) + 😵.

6.2.4.2. Установка способа управления

Для конкретной системы регулирования нужно выбрать способ управления, задав соответствующие значения параметра Б-ЕЦ:

<u>ог</u> - обратное управление, используется для систем нагревания;

ār-d – прямое управление, используется для систем охлаждения.

Раздел 6

газдел

6.2.4.3 Установка режима регулирования

Прибор может работать в одном *из двух режимов регулирования* – двухпозиционное или ПИД-регулирование.

Установка требуемого режима осуществляется установкой нужного значения параметра [ntl:

- **Рі** ПИД-регулирование;
- **Боб** двухпозиционное регулирование.

Примечание. При регулировании параметр *[-ь]. не отображается* на индикаторе. Изменение значения параметра возможно только после остановки процесса регулирования путем:

- а) задания параметру *с* 5 значения 5*ьоР*;
- б) изменения состояния ключа на дополнительном входе, если задействована соответствующая функция дополнительного входа (см. п.6.2.8).
 - 6.2.4.4. Дополнительные настройки для двухпозиционного регулятора

Гистерезис двухпозиционного регулятора ∆ (в единицах измеряемой величины) задается в параметре **НУБ** (см. п.3.2.6).

Параметр допускается изменять в диапазоне 0.0...+999,9 °С для температурных датчиков (ТСП, ТСМ и термопар), 0...9999 для аналоговых.

- 6.2.4.5. Дополнительные настройки для ПИД-регулятора
- 6.2.4.5.1. Зона нечувствительности (см. п. 3.2.7.3) задается в параметре **дь**.

Параметр db устанавливается в единицах измерения входной величины в диапазоне от 0,0 до 20,0 °C для температурных датчиков (ТСП, ТСМ и термопар), от 0 до 200 °C для аналоговых.

6.2.4.5.2. Ограничения выходного сигнала (см. п. 3.2.7.5) осуществляются параметрами **āL-L. āL-H** и **ārL**.

Ограничение минимального значения выходного сигнала āL-L устанавливается в процентах и может принимать значения от 0 до āL-H. Если рассчитанное значение выходного

Раздел 6

Программирование прибора

сигнала, в том числе в режимах «ошибка» и «остановка регулирования», меньше установленного в параметре $\vec{a}L \cdot L$, на выход регулятора будет выдан сигнал $\vec{a}L \cdot L$ (%).

Ограничение максимального значения выходного сигнала $\vec{a}L \cdot H$ устанавливается в процентах и может принимать значения от $\vec{a}L \cdot L$ до 100. Если рассчитанное значение выходного сигнала, в том числе в режимах «ошибка» и «остановка регулирования», больше установленного в параметре $\vec{a}L \cdot H$, на выход регулятора будет выдан сигнал $\vec{a}L \cdot H$ (%).

Ограничение скорости изменения выходного сигнала устанавливается в параметре **arl** и определяет максимально допустимую скорость изменения выходного сигнала, устанавливается в процентах в секунду (%/c).

6.2.4.5.3. При импульсном режиме управления (выходное устройство ключевого типа) необходимо задать период следования управляющих импульсов – параметр $\mathbf{\mathit{LP}}$. При аналоговом управлении значение параметра $\mathbf{\mathit{LP}}$ не влияет на работу прибора.

Значение периода следования *СР* определяется при проведении автонастройки (см. разд. 7.1). Параметр *СР* следует устанавливать в диапазоне 1...250 с.

6.2.5. Установка параметров режима ручного управления ПИД-регулятором

В режим ручного управления можно перейти только при следующей комбинации значений параметров:

Entl = Pid

r-5 = rUn (при использовании дополнительного входа:

ключ разомкнут для $E_{\mathbf{u}}$ - $I = n - \bar{\mathbf{o}}$;

ключ замкнут для E_{u} - l = n-E).

At = StaP

В этом случае появляется группа **L** пЯп.

При переходе к первому параметру группы $L \bar{n} R_0$ (краткое нажатие кнопки (R_0)) прибор устанавливает режим ручного управления, регулятор автоматически отключается, засвечивается

Раздел 6

Puc. 28

светодиод РУЧ, на верхнем индикаторе отображается значение измеренной величины, на нижнем устанавливаемое значение выходного сигнала регулятора о-Ed(рис. 28)

Оператор кнопками (🔊) и (😵) устанавливает значение **ā-Еd** в диапазоне от **āL-L** до **āL-H**, а прибор осуществляет преобразование этого сигнала для управления ВУ1.

Параметр . - текущее рассчитанное прибором значение выходной мощности, которое может отличаться от значения параметра **Б-Е** из-за действия параметра

ārL группы Яди, запрещающего резкое изменение мощности, выдаваемой на ВУ1. Т.е., установив требуемое значение мощности в параметре \bar{a} -Ed, следует перейти к параметру \bar{a} . и убедиться что, текущая мощность достигла значения, установленного в \bar{a} -Ed.

Если в параметре ark установлено значение 100, выходная мощность передается на выход мгновенно.

Переход от параметра к параметру в режиме ручного управления выполняется обычным образом (короткое нажатие (прог.)).

Выход из режима выполняется обычным образом – нажатием и удержанием (пот) на 4-6 с.

6.2.6. Установка режима быстрого выхода на уставку

Данный режим обеспечивает выход на заданное значение температуры с максимальной скоростью и минимальным перерегулированием.

Включение режима осуществляется заданием параметру • ЯпР значения парам

ВНИМАНИЕ! После включения режима, а также при изменении коэффициентов ПИДрегулятора (параметры Р, с, d), необходимо обязательно провести АВТОНАСТРОЙКУ (см. п. 7.1).

Программирование прибора

6.2.7. Настройка компаратора и устройства «LBA»

Работа компаратора и устройства "LBA" описана в п. 3.2.8

6.2.7.1. Настройка компаратора

6.2.7.1.1. При настройке компаратора необходимо выбрать один из одиннадцати типов логики его срабатывания (см. п. 3.2.8.2) и установить требуемое значение параметра **FLL** (см. табл. Г.1).

6.2.7.1.2. После выбора логики срабатывания необходимо настроить порог срабатывания и гистерезис компаратора – параметры ЯІ- І и ЯІ- І, соответственно.

При установке в параметре ЯГЬ значения 0 компаратор будет выключен, параметры RL-d. RL-H недоступны.

Параметр Я - Н может принимать значения в диапазоне от 0 до верхней границы диапазона измерения используемого датчика.

Параметр Я - может принимать значения от нижней до верхней границы диапазона измерения используемого датчика.

6.2.7.2. Настройка сигнализации LBA

6.2.7.2.1. Для задания времени диагностики обрыва контура (параметр **LbR**) необходимо перейти в группу параметров Яди. Время диагностики обрыва контура **LbЯ** измеряется в секундах и может быть вычислено по методике, изложенной ниже.

Вычисление времени диагностики обрыва контура:

а) установить выходной сигнал на максимальный уровень;

б) измерить время, за которое измеряемая величина изменится на ширину зоны диагностики обрыва контура (по умолчанию ширина этой зоны равна 10);

в) увеличить измеренное время вдвое и принять его за время диагностики обрыва контура.

Раздел 6

При значении **Lb**, равном нулю, сигнализация об обрыве контура отключается, параметр *LЪЯЪ* недоступен.

- 6.2.7.2.2. Ширина зоны диагностики обрыва контура задается в параметре **LbRb** в единицах измерения входной величины в диапазоне от 0,0 до 999,9 для температурных датчиков (ТСП, ТСМ и термопар) и 0...9999 - для аналоговых.
 - 6.2.7.3. Настройка состояния «остановка регулирования»
- 6.2.7.3.1. В режиме двухпозиционного регулирования при остановленном регулировании работа ВУ1 блокируется (переводится в состояние, определенное в параметре алы).
- 6.2.7.3.2. При остановленном ПИД-регулировании ВУ1 переводится в состояние, определенное в параметре **лабы**:
- если ¬d5Ł = □ прибор выдает выходной сигнал равный последнему, определенному до остановки регулирования, значению выходного сигнала;
- если **лdSŁ = лuSŁ** прибор выдает выходной сигнал равный значению, установленному в параметре **ли5**Ł.
 - 6.2.7.4. Настройка состояния «ошибка»

При обнаружении какой-либо ошибки (см. прил. Д) прибор прекращает регулирование, и выходной сигнал регулятора принимает значение, определенное в параметре аперативной сигнал регулятора принимает значение, определенное в параметре двухпозиционном регулировании и лиЕг при ПИД-регулировании.

При срабатывании устройства обрыва контура выходной сигнал регулятора также принимает значение, определенное параметром алЕг или лиЕг. Выключение сигнала тревоги осуществляется установкой параметра c-5 в значение **5ь Б** \overline{o} P. Возобновление работы регулятора осуществляется установкой параметра -- 5 в значение -- 1/2 в значение --

Раздел 6

Программирование прибора

6.2.8. Настройка параметров дополнительного входа

Функции дополнительного входа и его работа описаны в п. 3.2.3

Для определения функций внешнего ключа при дистанционном управлении регулятором необходимо задать значение параметра Еи- 1:

попЕ – дополнительный вход не задействован; замыкание и размыкание ключа не влияет на работу прибора;

п-а – вход выполняет функцию запуска\остановки регулирования: ключ разомкнут – пуск, ключ замкнут - стоп;

л-Г – вход выполняет функцию запуска\остановки регулирования: ключ замкнут – пуск, ключ разомкнут - стоп.

Примечание. Параметр r - 5 (см. п. 8.2) при **Е**u - I отличном от **пос** при программировании не виден.

6.2.9. Защита отдельных параметров от просмотра и изменений

Каждый параметр прибора ТРМ210 имеет атрибут изменяемости, установка которого производится с компьютера через интерфейс RS-485. Атрибут изменяемости может принимать два значения: изменяемый и неизменяемый.

Параметр ЕdPt, находящийся в группе **SECr** (доступ к группе осуществляется через код **РЯ55= 100**), управляет возможностью просмотра и изменения параметров с учетом установленных пользователем атрибутов.

При установке ЕНРЕ в значение ол все параметры, в которых атрибут изменяемости принимает значение неизменяемый, становятся невидимыми.

При установке **Е**dР \mathbf{E} в значение dFF все параметры, независимо от значения атрибута изменяемости, будут видимыми.

Если в группе все параметры невидимы, то вся группа становится невидимой.

Раздел 6

6.2.10. Настройка обмена данными через интерфейс RS-485 Настройка обмена данными осуществляется параметрами группы **Голо**:

- **bP5** скорость обмена в сети; допустимые значения 2400, 4800, 9600, 14400, 19200, 28800. 38400. 57600. 115200 бит/с:
- **RLEn** длина сетевого адреса (8 или 11 бит).
- **Ядаг** базовый адрес прибора (0...2047);

Прибор ТРМ210 имеет также следующие фиксированные параметры обмена, не отображаемые на индикаторе:

Shit Количество стоп-бит Длина слова данных LEn Prty Контроль четности

ВНИМАНИЕ! Новые значения параметров обмена вступают в силу только после перезапуска прибора (после снятия и затем подачи питания) или перезапуска по RS-485.

6.3. Восстановление заводских установок

В приборе имеется функция восстановления значений параметров, установленных на заводе-изготовителе (см. таблицу Г1, столбец 5). Для этого необходимо отключить прибор от сети примерно на 1 мин, и далее, одновременно удерживая кнопки (🔊) и 😵), подать питание на прибор. При появлении на верхнем индикаторе [- - - -] (признак успешной записи) отпустить кнопки.

Раздел 7

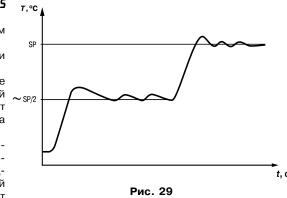
Настройка ПИД-регулятора

7.1. Автонастройка

7.1.1. Общие сведения

Автоматическая настройка (автонастройка) предназначена для оптимальной настройки системы регулирования непосредственно на объекте.

7.1.2. Выполнение автонастройки


- 7.1.2.1. Для запуска автонастройки необходимо осуществить следующие действия:
- 1) задать уставку регулятора **5***P*.

Примечание: Значение задаваемой уставки должно составлять 0,75 – 0,85 максимально допустимого значения регулируемой величины для данного технологического процесса.

- 2) задать параметру **--5** значение *сЦо*:
- 3) запустить настройку заданием параметру *ЯЕ* значения *сЦо*;

при запуске автонастройки загорается светодиод АН.

- 7.1.2.2. При автонастройке прибор работает как двухпозиционный ~ \$970 регулятор. Система осуществляет колебания, вид которых приведен на рис. 29.
- 7.1.2.3. В результате автонастройки прибор вычисляет оптимальные значения коэффициентов ПИДрегулятора $(X_{n}, \tau_{u}, \tau_{n})$ для данной системы. Кроме того происходит

определение постоянной времени входного сглаживающего фильтра τ_{Φ} (см. п. 3.2.4.3, 6.2.2), периода следования управляющих импульсов $T_{c\pi}$ (см. п. 3.2.7.6, 6.2.4.5.3) и рекомендуемое значение параметра $\mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$

7.1.2.4. После окончания автонастройки светодиод **АН** гаснет, прибор автоматически переходит в режим РАБОТА. При сбое в процессе автонастройки ее выполнение сразу прекращается, светодиод **АН** мигает. Поэтому при выполнении автонастройки особое внимание надо уделить защите прибора от различных внешних воздействий и электромагнитных помех и устранить нежелательные внешние возмущения на объекте регулирования.

ВНИМАНИЕ!

- 1. В режиме автоматическая настройка сохраняется возможность для изменения параметров функционирования и режимов работы прибора. Однако в процессе автоматической настройки этой возможностью пользоваться не рекомендуется, так как изменение параметров или режимов нарушает процесс настройки, при этом правильность расчета параметров регулятора не гарантируется.
- 2. Необходимо проявлять осторожность при использовании режима автоматическая настройка. Использовать этот режим рекомендуется только тогда, когда объект регулирования допускает возникновение заметных колебаний технологического параметра относительно уставки. Если работа в таком режиме недопустима, параметры ПИД-регулятора следует задавать вручную (п. 7.2), исходя из априорной информации об инерционных свойствах объекта.

7.2. Ручная настройка

7.2.1. Если характеристики объекта регулирования заранее известны, пользователь вручную может установить параметры ПИД- регулирования:

P – полосу пропорциональности регулятора $X_{\rm s}$;

с – постоянную времени интегрирования т_{...};

d – постоянную времени дифференцирования т.;

7.2.2. Значения параметра \vec{P} устанавливаются в единицах измерения входной величины в диапазоне от 0,1 до 999,9 для температурных датчиков (ТСП, ТСМ и термопар) и 0,001...9999 – для аналоговых.

Значения параметра $\vec{\iota}$ устанавливаются в секундах; диапазон – от 0 до 3999 с. При $\vec{\iota}$ = 0 прибор работает как ПД-регулятор.

Значения параметра 🗹 устанавливаются в секундах; диапазон – от 0 до 3999 с. При

d = 0 прибор работает как ПИ-регулятор.

При $\vec{L} = 0$ и $\vec{d} = 0$ прибор работает как П-регулятор.

Примечание: После ручной настройки ПИД-регулятора режим быстрого выхода на уставку (см. п. 6.2.6) должен быть выключен, в противном случае необходимо дополнительно провести АВТОНАСТРОЙКУ (см. п. 7.1).

Эксплуатация Раздел 8

8.1. Общие сведения

- 8.1.1. При включении питания прибор начинает измерять контролируемую величину. Измеренная величина отображается на верхнем индикаторе.
- 8.1.2. При нажатии кнопки (РВГ) на нижнем индикаторе появляется значение уставки **5**/2, которое можно оперативно изменить кнопками (А) и (В), если не установлена защита от изменений или доступа (см. п. 6.2.9).

8.2. Настройка запуска/остановки процесса регулирования

Запуск и остановка процесса регулирования могут быть осуществлены тремя способами:

- а) изменением значения параметра --5:
- **ги**п регулятор работает;
- **5**Ł **БР** регулятор остановлен, светится светодиод **СТОП**.

Примечание: Если остановка регулятора произошла из-за аварии LBA или аппаратной ошибки, светодиод **СТОП** мигает.

- б) изменением состояния ключа на дополнительном входе, если задействована соответствующая функция дополнительного входа (см. п. 6.2.8):
 - в) соответствующей командой от управляющего устройства в сети RS-485.

8.3. Регулирование

После запуска процесса регулирования прибор начинает управлять внешним исполнительным устройством в соответствии с заданными режимами работы.

Визуальный контроль за работой выходного устройства в режиме регулирования оператор может осуществлять по светодиоду «К1», расположенному на передней панели прибора. В зависимости от типа выходного устройства светодиод работает по-разному.

Для выходных устройств ключевого типа свечение светодиода сигнализирует о переводе ВУ в состояние «ВКЛЮЧЕНО», а погасание – в состояние «ОТКЛЮЧЕНО».

Раздел 8 Эксплуатация

Для приборов с ВУ аналогового типа длительность свечения светодиода зависит от мощности выходного сигнала. При минимальном выходном сигнале тока 4 мА (напряжения 0 В) светодиод «К1» не светится, при дальнейшем увеличении мощности сигнала светодиод начинает мигать с частотой 1 раз в секунду. При сигнале 20 мА (10 В) светится непрерывно.

Pery

- 9.1. Обслуживание прибора в период эксплуатации состоит из периодического технического осмотра, а также поверки его метрологических характеристик.
- 9.2. Технический осмотр прибора должен проводиться обслуживающим персоналом не реже одного раза в шесть месяцев и включать в себя выполнение следующих операций:
 - очистку корпуса прибора, а также его клеммников от пыли, грязи и посторонних предметов;
 - проверку качества крепления прибора к щиту управления;
 - проверку надежности подключения внешних связей к клеммникам.

Обнаруженные при осмотре недостатки следует немедленно устранить.

- 9.3. Поверка метрологических характеристик приборов должна проводиться не реже одного раза в 3 года по методике КУВФ.421210.001 МП. При необходимости проводится юстировка ТРМ210 (прил. E).
- 9.4. При выполнении работ по техническому обслуживанию прибора необходимо соблюдать меры безопасности, изложенные в разд. 4.

- 10.1. На прибор наносятся:
- наименование предприятия-изготовителя;
- обозначение прибора в соответствии с настоящими ТУ;
- обозначение класса точности;
- изображение знака соответствия государственным стандартам;
- обозначение напряжения и частоты питания;
- год его выпуска;

Раздел 10

- штрих-код с информацией о приборе.
- 10.2. Упаковка прибора производится в соответствии с ГОСТ 23170.

Тип упаковочной тары – потребительская, выполненная из гофрированного картона.

Гарантийные обязательства

Габаритные чертежи

Приложение А

- 11.1. Изготовитель гарантирует соответствие прибора техническим условиям при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.
 - 11.2. Гарантийный срок эксплуатации 24 месяца со дня продажи.
- 11.3. В случае выхода прибора из строя в течение гарантийного срока при условии соблюдения потребителем правил транспортирования, хранения, монтажа и эксплуатации, а также при наличии заполненной Ремонтной карты предприятие-изготовитель обязуется осуществить его бесплатный ремонт. Для отправки в ремонт необходимо:
 - заполнить Ремонтную карту в Гарантийном талоне;
 - вложить в коробку с прибором заполненный Гарантийный талон;
 - отправить коробку по почте или привезти по адресу:

109456, г. Москва, 1-й Вешняковский пр., д. 2.

Тел.: (495) 742-48-45, e-mail: rem@owen.ru

- ВНИМАНИЕ! 1. Гарантийный талон недействителен без даты продажи и штампа продавца.
 - 2. Крепежные элементы вкладывать в коробку не нужно.

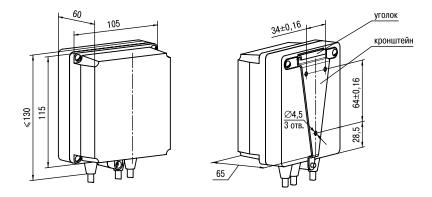
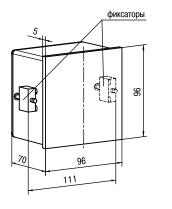
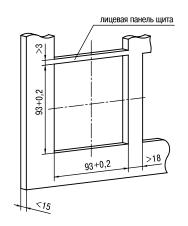
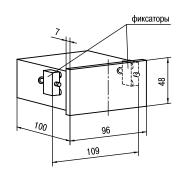





Рис. А.1. Прибор настенного крепления Н

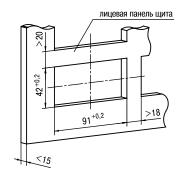


Рис. А.2. Прибор щитового крепления Щ1

Рис. А.З. Прибор щитового крепления Щ2

Рис. Б.1. Общая схема подключения

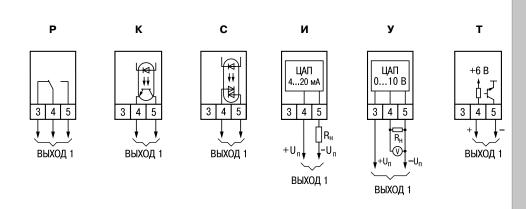


Рис. Б.2. Схемы подключения к различным модификациям ВУ1

Продолжение прил. Б

Схемы подключения

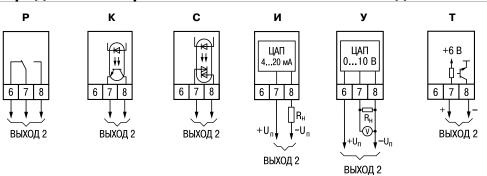


Рис. Б.З. Схемы подключения к различным модификациям ВУ2

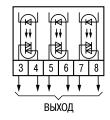


Рис. Б.4. Схемы подключения ТРМ210-X.С3

Подключение ТС по двухпроводной схеме Приложение В

- В.1. Подключение термопреобразователя сопротивления с прибором по двухпроводной схеме производится в случае невозможности использования трехпроводной схемы, например при установке TPM210 на объектах, оборудованных ранее проложенными двухпроводными монтажными трассами.
- В.2. Следует помнить, что показания прибора будут зависеть от изменения сопротивления проводов линии связи «датчик прибор», происходящего под воздействием температуры окружающего воздуха. Для компенсации паразитного сопротивления проводов нужно выполнить следующие действия.
- В.2.1. Перед началом работы установить перемычку между контактами 9 и 10 клеммника прибора, а двухпроводную линию подключить соответственно к контактам 9 и 11.
- В.2.2. Далее подключить к противоположным от прибора концам линии связи «датчик прибор» вместо термопреобразователя магазин сопротивлений с классом точности не хуже 0,05 (например, P4831).
- В.2.3. Установить на магазине значение, равное сопротивлению термопреобразователя сопротивления при температуре 0 $^{\circ}$ C (50 или 100 Ом, в зависимости от типа датчика).
- В.2.4. Подать на прибор питание и через 15 20 с по показаниям цифрового индикатора определить величину отклонения температуры от $0\,^{\circ}$ C.
- В.2.5. Ввести в память прибора значение параметра «сдвиг характеристики датчика» **5***H*, равное по величине показаниям прибора, полученным в п. В.2.4, но взятое с противоположным знаком.
- В.2.6. Проверить правильность заданного значения, для чего, не изменяя значения сопротивления на магазине, перевести прибор в режим измерения температуры и убедиться, что при этом его показания равны $0\pm0.2\,^{\circ}$ C.
- В.2.7. Отключить питание прибора, отсоединить линию связи от магазина сопротивлений и подключить ее к термопреобразователю сопротивления.
 - В.2.8. После выполнения указанных действий прибор готов к дальнейшей работе.

Приложение Г

Программируемые параметры

Таблица Г.1

Обознач.	Название	Допустимые значения	Комментарии	Заводская установка	Значения пользова- теля
1	2	3	4	5	6
Группа а	<i>∟⊔оР</i> . Параметры регу	лирования			
Ри	Измеренная величина	диапазон измерения датчика	[ед. изм.] Параметр не устанавливаемый, а индицируемый		
SP	Уставка регулятора ¹	определяется параметрами 5L-L и 5L-H	На индикаторе обозначение параметра не отображается	30.0	
r-5	Запуск/остановка регулирования	rUn 5tāP	Регулятор работает Регулятор остановлен, на выходное устройство выдается сигнал, равный значению, установленному в параметре ¬d5L или ¬n5L	SEÖP	
RĿ	Запуск/остановка автонастройки	rUn StāP	Не появляется при $r - 5 = 5 E_0 P$. Запускается режим автонастройки Автонастройка выключена	Stöp	
ō	Выходная мощность ПИД-регулятора	0,0 100,0	[%] Параметр не устанавливаемый, а индицируемый.	_	

Программируемые параметры Продолжение прил. Г

1	2	3	4	5	6	
Группа	Группа こоこと. Основные параметры настройки					
Группа Сп-Е	Гос E . О сновные парам Тип датчика	- 385 - 385 - 385 - 385 - 381 - 426 - 426 - 428 - 428	ТСП(Рt50) $W_{100} = 1,3850$ ТСП(Рt100) $W_{100} = 1,3850$ ТСП(Рt100) $W_{100} = 1,3910$ ТСП(100П) $W_{100} = 1,3910$ ТСП(20П) $W_{100} = 1,3910$ (гр. 21) ТСМ(Си50) $W_{100} = 1,4260$ ТСМ(Си50) $W_{100} = 1,4260$ ТСМ(53M) $W_{100} = 1,4260$ (гр. 23) ТСМ(50M) $W_{100} = 1,4280$ ТСМ(100M) $W_{100} = 1,4280$ ТСМ(100M) $W_{100} = 1,4280$ ТСРМОПРОВ ТВР (А-1) ТЕРМОПАРА ТВР (А-2) ТЕРМОПАРА ТПР (В) ТЕРМОПАРА ТХК (Ј) ТЕРМОПАРА ТКИ (L) ТЕРМОПАРА ТПП (R)	EL		
		E5 EE ご O_5	термопара ТПП (S) термопара ТМК (T) Сигнал тока 05 мА			

	1 0	3		-	•
1	2	3	4	5	6
		2 0.20 2 4.20 U-50 UO_1	Сигнал тока 020 мА Сигнал тока 420 мА Сигнал напряжения –50+50 мВ Сигнал напряжения 01 В		
dPE	Точность вывода температуры	0; 1	Задает число знаков после запятой при отображении температуры на индикаторе		
dР	Положение десятичной точки	0; 1; 2; 3	Задает число знаков после запятой при отображении на индикаторе измеренного значения, а также параметров 5P, СпL, СпH, 5LL, 5LH и др.	-	
īn-L	Нижняя граница диапазона измерения ¹	-19999999	Задает значение физической величины соответствующей нижнему пределу выходного сигнала датчика	0.0	
En-H	Верхняя граница диапазона измерения ¹	-19999999	Задает значение физической величины соответствующей верхнему пределу выходного сигнала датчика	(00.0	
SL-L	Нижняя граница задания уставки ¹	от нижней до верх. границы диапазона изме- рения датчика	[ед. изм.]	- 199.9	

Программируемые параметры Прод

Тродолжение прил. Г

1	2	3	4	5	6
5L -H	Верхняя граница задания уставки ¹	от нижней до верх. границы диапазона изме- рения датчика	[ед. изм.]	800.0	
5H	Сдвиг характеристики датчика ¹	-500+500	Прибавляется к измеренному значению, [ед. изм.]	0.0	
РЦ	Наклон характеристики датчика	0,5002,000	Умножается на измеренное значение	1.000	
FЬ	Полоса цифрового фильтра ¹	09999	[ед. изм.]	0.0	
ΞηF	Постоянная времени цифрового фильтра	0999	[c]	0	
ALE	Тип логики работы компаратора	0 1 2 3 4 5	сигнализация выключена срабатывание при выходе за заданный диапазон срабатывание по верхнему пределу срабатывание по нижнему пределу срабатывание при нахождении в заданном диапазоне срабатывание при выходе за заданный диапазон с блокировкой 1-го включения срабатывание по верхнему пределу	0	
		7	с блокировкой 1-го включения срабатывание по нижнему пределу с блокировкой 1-го включения		

1	2	3	4	5	6
		8	срабатывание при превышении по абсолютному значению		
		9	срабатывание при абсолютном значении		
		10	меньше заданного срабатывание при превышении по абсолютному значению		
		11	с блокировкой 1-го включения срабатывание при абсолютном значении меньше заданного с блокировкой 1-го включения		
AL-d	Порог срабатывания компаратора ¹	от нижней до верх. границы диапазона изме- рения датчика	[ед. изм.]	10.0	
FL-H	Гистерезис компаратора ¹	от 0 до верх.гра- ницы диапазона измер. датчика		0.0	
An-L	Нижняя граница диапазона регистрации ЦАП2 ^{1,2}	от нижней до верх. границы		0.0	
R∩-H	Верхняя граница диапазона регистрации ЦАП2 ^{1,2}	диапазона изме- рения датчика	Rn-L ≠ Rn-H	100.0	
Eu- 1	Функция ключа на дополнительном входе при дистанционном управлении регулятором	nānE n-ā n-C	Дополнительный вход не задействован запуск при размыкании ключа запуск при замыкании ключа	nănE	

Программируемые параметры Продолжение прил. Г

1	2	3	4	5	6
ōr EU	Тип управления при регулировании	or-d or-r	«Прямое» управление. Выходной сигнал увеличивается при увеличении измеряемого значения. Применяется для управления «холодильником» «Обратное» управление. Выходной сигнал уменьшается при увеличении измеряемого значения. Применяется для управления «нагревателем».	or-r	
[P	Период следования управляющих импульсов	01250	[c]	1	
Группа	<i>Яd</i> ь. Дополнительные п	араметры нас	тройки прибора		
uSP	Скорость изменения уставки ¹	09999 0	[ед.изм/мин] Параметр отключен	0.0	
EnEL	Режим регулирования	P.I.d anaF	ПИД-регулятор Двухпозиционный регулятор	PZd	
HYSŁ	Гистерезис двухпозицион- ного регулятора ^{1,3}	09999	[ед. изм.]	lΩ	
ān5t	Состояние выхода в режиме «остановка регулирования» ³	ān āFF	включен выключен	ōFF	
ōnEr	Состояние выхода в режиме «ошибка» ³	ān āFF	включен выключен	ōFF	
rRōP	Режим быстрого выхода на уставку ⁴	ān āFF	включен выключен	ōFF	

80

	<u>-</u>		· · · · · · · · · · · · · · · · · · ·		
1	2	3	4	5	6
Р	Полоса пропорциональности ПИД-регулятора ^{1,4}	0,0019999	[ед. изм.]	30.0	
Ĺ	Интегральная постоянная ПИД-регулятора ⁴	03999	[c]	100	
В	Дифференциальная постоянная ПИД-регулятора ⁴	03999	[c]	20	
db	Зона нечувствительности ПИД-регулятора ^{1,4}	0200	[ед. изм.]	0.0	
āL-L	Минимальная выходная мощность (нижний предел) ⁴	от 0 до <i>БL -Н</i>	[%]	<i>[</i>]	
āL −H	Максимальная выходная мощность (верхний предел) ⁴	от <i>āL-L</i> до 100	[%]	100	
õrL	Максимальная скорость изменения выходной мощности ⁴	0,2100,0	[% /c]	100	
กับEr	Значение выходной мощности в состоянии «ошибка» ⁴	0100	[%]	0	
⊼d5Ł	Состояние выхода в режиме «остановка регулирования» ⁴	, n 2F	заданное параметром 🙃 5 последнее значение выходного сигнала	กับ5ะ	
ñ⊔5E	Значение выходной мощности в состоянии «остановка регулирования» ⁴	0100	[%]	<u> </u>	

Программируемые параметры Продолжение прил. Г

1	2	3	4	5	6
LbR	Время диагностики обрыва контура ⁴	09999 0	[c] Функция определения обрыва контура не работает	0	
LЬЯЬ	Ширина зоны диагностики обрыва контура ^{1, 4}	09999	[ед. изм.]		
Группа	Голл . Параметры обмен	на по интерфеї	icy RS-485		
<i>ъР</i> 5	Скорость обмена данными в сети	2.4 4.8 9.6 14.4 19.2 28.8 38.4 57.6 115.2	[кбит/с] Должна соответствовать скорости обмена данными, установленной в сети	1 IS.Z	
RLEn	Длина сетевого адреса	8 11	[бит]	86	
Addr	Базовый адрес прибора в сети	02047	Запрещается устанавливать одинаковые номера нескольким приборам в одной шине	0	
r5dL	Задержка ответов по сети	145	[MC]	20	

82

_					-	
1	2	3	4	5	6	
Группа	Группа ŁōRo. Параметры ручного управления ПИД-регулятором					
ō-Ed	Выходной сигнал ПИД-регулятора	определяется параметрами о̀L-L и о̀L-H	[%] На индикаторе обозначение параметра не отображается	0.0		
ō.	Текущее значение выходной мощности ПИД-регулятора	0.0 100.0	[%] Параметр не устанавливаемый, а индицируемый	-		
Группа	Группа <i>SELr</i> . Параметры секретности <i>PRSS = 100</i>					
EdPŁ	Защита отдельных параметров от просмотра и изменений	ōn ōFF	включена выключена	<u>ā</u> FF		

Параметры отображаются с десятичной точкой, положение которой определяется параметром dP.

Возможные неисправности

Продолжение прил. Д

При опробовании прибора (см.п. 5.4) некоторые неисправности TPM210 может диагностировать:

- **Err.5** ошибка на входе;
- **Ег.БЧ** ошибка процессора;
- **Ег.Я** d ошибки внутреннего преобразования;

Примечания. 1. Ошибка на входе возникает при выходе измеряемой величины за допустимый диапазон измерения (см. табл. 2) или при выходе из строя датчика (обрыв или короткое замыкание термопреобразователей сопротивления, обрыв термопары, обрыв датчика с унифицированным выходным сигналом напряжения, обрыв или короткое замыкание датчика, оснащенного выходным сигналом тока 4...20 мА). В случае короткого замыкания термопары на индикаторе отображается температура «холодного спая», равная температуре выходного разъема прибора. В случае обрыва или замыкания датчика (или линий связи) с унифицированным выходным сигналом тока 0...5 мА, 0...20 мА, замыкания датчика с унифицированным сигналом напряжения 0...1В на индикаторе отображается нижняя граница диапазона измерения (значение параметра in-L).

После устранения неисправности работа прибора автоматически восстанавливается.

- 2. При работе с термопарой ТПР(B) сообщение \emph{Erc} . 5 не выдается при температуре от 0 до 200 $^{\circ}$ С.
- 3. В состоянии «ошибка» (за исключением срабатывания LBA) сигнал регистрации принимает минимальное возможное состояние (код ЦАП=0), что соответствует выходному току ~3, 7 мА.

² Параметр отображается только для приборов с ВУ аналогового типа.

³ Параметры отображаются при **Entl = ono**F.

⁴ Параметры отображаются при **Enet = PEd**.

Продолжение прил. Д Способы устранения неисправностей

Проявление	Возможная причина	Способ устранения
1	2	3
На индикаторе в режиме РАБОТА	Неисправность датчика	Замена датчика
при подключенном датчике отображаются <i>Есс</i> . 5	Обрыв или короткое замыкание линии связи «датчик-прибор»	Устранение причины неисправности
	Неверно задан тип датчика	По алгоритму, приведенному в п. 6.2.1.1 установить код, соответствующий используемому датчику
	Неверное подключение датчика к прибору	Проверить по руководству по эксплуатации схему подключения прибора и датчиков
	Неверно произведено подключение по 2-х проводной схеме соединения прибора с термопреобразователем сопротивления	
	При подключении токового сигнала отсутствует резистор	Подключить к входу прибора нагрузочный резистор (см. <i>прил. Б</i>)
На индикаторе в режиме РАБОТА отображается 3333	Измеренная величина превышает значение 999.9 и не может быть отображена на 4-х разрядном индикаторе с точностью 0,1 °C	Установить значение 0 в параметре dPt

Возможные неисправности

Продолжение прил. Д

1	2	3
На индикаторе в режиме РАБОТА отображается <i>ЕЕЕЕ</i>	Измеренная величина меньше значения – 199.9 и не может быть отображена на 4-х разрядном индикаторе с точностью 0,1 °C	Установить значение 0 в параметре дРŁ
Значение температуры в режиме РАБОТА на индикаторе не соответствует реальной	Неверно задан тип датчика	По алгоритму, приведенному в п. 6.2.1.1, установить код, соответствующий используемому датчику
	Введено неверное значение параметра «сдвиг характеристики».	По алгоритму, приведенному в п. 6.2.1.4 установить требуемое значение параметра. Если коррекция не нужна, установить 5H = II.II
	Используется 2-х проводная схема соединения прибора с термопреобразователем сопротивления	Воспользоваться рекомендациями прил. В
	Действие электромагнитных помех	Экранировать линию связи датчика с прибором, экран заземлить в одной точке

86 87

Продолжение прил. Д Способы устранения неисправностей

1	2	3
На индикаторе при наличии токового сигнала отображаются нули	Неверное подключение датчика к прибору	Уточнить схему подключения датчика (прил. Б)
При нагреве темпера- тура уменьшается и при охлаждении увеличи- вается	Неверное соединение прибора с термопарой	Изменить полярность подключения термопары (см. рис. Б.1)
Не работает выходное устройство компаратора (электромагнитное реле)	Неправильно задан порог и гистерезис компаратора	Установить верные значения параметров ЯL-d и ЯL-H
	Остановлен процесс регулирования	Задать параметру г - 5 значение <i>г</i> Ц л
Не происходит точного поддержания температуры (недогрев или перегрев)	Введено неоправдано большое значение зоны нечувствительности ПИДрегулятора	Установить параметр «зона нечувствительности» на требуемом уровне (рекомендованное значение от 0 до 1 °C)
	Установлены неверные значения коэффициентов ПИДрегулятора	Воспользоваться режимом АВТОНАСТРОЙКА (п. 7.1) или ручной настройкой (см. п. 7.2)
Невозможно изменить параметры программи- рования	Установлена защита от просмотра и изменения отдельных параметров	Установить нужное значение параметров секретности (см. 6.2.9)

Возможные неисправности

Продолжение прил. Д

1	2	3
ПИД-регулятор	Установлено слишком малое	Увеличить время диагностики
	время диагностики обрыва контура в параметре <i>LьЯ</i>	или отключить его, установив значение параметра LbЯ = 🛭

Примечание. Если неисправность или предположительная причина в таблице не указаны, прибор следует доставить в ремонт.

Юстировка

Е.1. Общие указания

Е.1.1. Юстировка ТРМ210 заключается в проведении ряда операций, обеспечивающих восстановление его метрологических характеристик в случае изменения их в ходе длительной эксплуатации прибора.

ВНИМАНИЕ! Необходимость проведения юстировки определяется по результатам поверки прибора только квалифицированными специалистами метрологических служб, осуществляющих эту поверку.

Методика юстировки зависит от типа используемого датчика.

Таблица Е.1

Тип датчика	Источник образцового сигнала	Значение сигнала	Схема подключения	
Термопреобразователь сопротивленияТСМ100, ТСП100	Магазин сопротивлений Р4831	100 Ом	Рис. Е.1	
Термопреобразователь сопротивления ТСМ50, ТСП50	Магазин сопротивлений Р4831	50 Ом	Рис. Е.1	
Термопреобразователь сопротивления ТСМ гр.23	Магазин сопротивлений Р4831	53 Ом	Рис. Е.1	
Термопреобразователь сопротивления ТСП гр.21	Магазин сопротивлений Р4831	46 Ом	Рис. Е.1	
Термопара ТХК(L), ТХА(K) ТЖК(J), ТНН(N)	Дифференциальный вольметр В1-12 в режиме калибратора напряжений	40,299 мВ	Рис. Е.2	

Продолжение таблицы Е.1

1	2	3	4
Термопара ТВР(А), ТПП(S), ТПП(R), ТМК(Т)	Дифференциальный вольтметр В1-12 в режиме калибратора напряжений	20,146 мВ	Рис. Е.2
Термопара ТПР(В)	Дифференциальный вольтметр В1-12 в режиме калибратора напряжений	10,073 мВ	Рис. Е.2
Сигнал постоянного тока 020 мА, 420 мА	Дифференциальный вольтметр В1-12 в режиме калибратора тока	20 мА	Рис. Е.3
Сигнал постоянного тока 05 мА	Дифференциальный вольтметр В1-12 в режиме калибратора тока	5 мА	Рис. Е.3
Сигнал постоянного напряжения 01 В	Дифференциальный вольтметр В1-12 в режиме калибратора напряжений	1 B	Рис. Е.2
Сигнал постоянного напряжения –50+50 мВ	Дифференциальный вольтметр В1-12, в режиме калибратора напряжений	50 мВ	Рис. Е.2

Продолжение прил. Е

используемого датчика, приведены в таблице Е.1.

Юстировка

- Е.1.2. Для проведения юстировки на вход прибора подается образцовый сигнал. Источники образцовых сигналов, их значения, а также тип схемы подключения, зависящей от
- Е.1.3. Во время юстировки прибор вычисляет отношение между поступившим входным сигналом и сигналом соответствующих опорных точек схемы, называемое коэффициентом юстировки.
- Е.1.4. При проведении юстировки происходит определение коэффициентов юстировки измерительной характеристики того типа датчика, код которого установлен на текущий момент в параметре [n-t]. Вычисленные значения коэффициентов юстировки записываются в энергонезависимую память и используются как базовые при выполнении всех дальнейших измерений с данным типом датчика.

Е.2. Процедура вычисления коэффициентов юстировки

Е.2.1. Вычисление коэффициентов юстировки производится при изменении значений программируемых параметров в группе **ЕЯLЬ**.

Доступ к группе параметров юстировки осуществляется через код 🖫 ч.

Нажать одновременно (№0) + (※) + (※) и удерживать до появления *РЯ*55. Кнопками (※), (※) установить код 104.

- Е.2.2. После набора кода нажать (□□□). На индикаторе отобразится параметр «Юстировка наклона измерительной характеристики» *ЕЦьЫ* и его значение по умолчанию 5*LъP*.
- E.2.3. Установить значение этого параметра в **г ⊔** (запуск юстировки) и нажать то в течение 2 с прибор производит измерение образцовых сигналов, подключенных к основному входу.
- Е.2.4. При получении правильного результата юстировки на индикаторе отображается значение параметра *[Lbd = 5ŁōP*, а для термопар значение параметра «Юстировка схемы компенсации температуры свободных концов термопары» *[Lb5 = 5ŁōP*.

Юстировка

Продолжение прил. Е

При получении неправильных результатов на индикаторе появляется значение параметра $\emph{Elbd} = \textit{ErL}$, показывающее ошибку юстировки. Причинами ошибки юстировки может быть неправильное подключение источника образцового сигнала к прибору, неправильное значение образцового источника сигнала, а также неисправность прибора.

E.2.5. После устранения причины появления сообщения об ошибке юстировки еще раз провести юстировку, повторив п. E.2.3.

Е.З. Юстировка прибора для работы с термопреобразователями сопротивления

Е.З.1. Подключить к основному входу прибора вместо датчика магазин сопротивления типа P4831 (или подобный ему с классом точности не хуже 0,05). Соединение прибора с магазином производить по трехпроводной схеме подключения, см. рис. Е.1. Сопротивления проводов линии должны отличаться не более чем на 0,05 %.

Е.3.2. Подать питание на прибор и установить тип датчика (параметр $\bar{\iota} n$ - $\bar{\iota}$), соответствующий используемому типу первичного преобразователя.

Установить на магазине значение сопротивления в соответствии с табл. E.1.

Перевести прибор в режим измерения входной величины и через 5...10 с проконтролировать показания прибора. Эти показания должны быть равны 0.0 ± 0.2 °C.

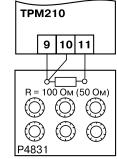


Рис. Е.1

- Е.З.З. Если абсолютная погрешность измерений в этой точке превышает 0,2 °С выполнить операции, указанные в п. Е.З.4 и Е.З.5.
- Е.З.4. Произвести юстировку прибора, выполняя действия в порядке и последовательности, приведенных в разд. Е.2.

Е.3.5. Произвести проверку результатов юстировки, проконтролировав в режиме РАБОТА показания верхнего цифрового индикатора, которые должны быть равны 0.0 ± 0.2 °C.

Е.З.6. Отключить питание прибора и отключить от него магазин сопротивлений.

Е.4. Юстировка прибора для работы с термопарами

Е.4.2. Подать питание на прибор и установить тип датчика (параметр $\bar{\iota}_n$ - \boldsymbol{t}), соответствующий используемому типу первичного преобразователя.

Установить на выходе вольтметра В1-12 напряжение, соответствующее типу используемого датчика, см табл. Е.1.

Отключить работу схемы компенсации температуры свободных концов, установив в

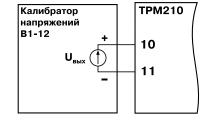


Рис. Е.2

параметре **УБС** значение **оFF**. Параметр отключения схемы компенсации температуры свободных концов термопары **УБС** находится в группе параметров юстировки, доступ к которой осуществляется через код 104.

Перевести прибор в режим РАБОТА и через 5...10 с проконтролировать показания прибора. Эти показания должны быть равны следующим значениям:

при работе с термопар	ой TXK(L)	$500,0 \pm 2,0$ °C;
при работе с термопар	ой ТХА(К)	975,0 ± 2,0°C;
при работе с термопар	ой THH(N)	1105± 2°C;
при работе с термопар	ой ТЖК(J)	718,6 ± 2,0°C;
при работе с термопар	ой ТПП(R)	1694 ± 4°C;
при работе с термопар	ой TBP(A_1)	1269 ±4°C;
при работе с термопар	ой TBP(A_2)	1256 ± 4°C;
при работе с термопар	ой TBP(A_3)	1281 ± 4°C;
при работе с термопар	ой ТПР (В)	1498 ± 4°C;
при работе с термопаро	ой ТМК (Т)	388 ± 4°C;

Примечание.

Юстировка

Для термопары ТПП(S) правильность выполнения измерения контролируется при подаче на вход прибора образцового напряжения 15,00 мВ. При этом показания прибора должны составлять $1452 \pm 4^{\circ}$ C.

Если погрешность измерений в этой точке превышает приведенную в п. Е.4.2 величину, выполнить операции, указанные в п. Е.4.3 и Е.4.4. Если погрешность не превышает приведенных выше значений, юстировка не требуется.

- E.4.3. Произвести юстировку прибора, выполняя действия в порядке и последовательности, приведенных в разд. E.2.
- Е.4.4. Произвести проверку результатов юстировки, проконтролировав в режиме РАБОТА показания верхнего цифрового индикатора, которые должны быть равны значениям, указанным в п. Е.4.2.

ВНИМАНИЕ! При выполнении работ по пп. Е.4.2...Е.4.4 выходное напряжение калибратора должно оставаться неизменным и равным значению, заданному в п. Е.4.2.

Юстировка

Е.4.5. Если погрешность измерений в этой точке превышает приведенную в п. Е.4.2 величину, повторно выполнить операции, указанные в пп. Е.4.3 и Е.4.4.

Е.4.6. Отключить питание прибора и отключить от входа прибора вольтметр В1-12.

E.5. Юстировка прибора для работы с датчиками с выходным сигналом постоянного тока

Е.5.1. Подключить к основному входу прибора вместо датчика дифференциальный вольтметр В1-12 в режиме калибратора тока, или аналогичный ему источник образцового постоянного тока с классом точности не хуже 0,05. Соединение прибора с В1-12 выполнять по схеме, приведенной на рис. Е.3, с соблюдением полярности подключения.

Тип используемого резистора C2-29 B, сопротивление 100 Ом±0,05 %.

E.5.2. Подать питание на прибор и установить тип датчика (параметре **in-t**), соответствующий используемому типу первичного преобразователя.

R_{BX} = 100 Oм ± 0,1 %

Калибратор напряжений В1-12 + R_{BX} 10 11

Рис. Е.3

Установить в параметре *in-L* значение **0.0**, а в параметре *in-H* значение **100.0**.

Задать на выходе B1-12 значение тока, соответствующее типу установленного датчика (табл. E.1).

Перевести прибор в режим измерения входной величины и через 5...10 с проконтролировать показания прибора. Эти показания должны быть равны $100,0\pm0,2\%$. Если погрешность измерений в этой точке превышает приведенное значение, выполнить операции, указанные в п. Е.5.3. и Е.5.4.

E.5.3. Произвести юстировку прибора, выполняя действия в порядке и последовательности, приведенных в разд. E.2.

E.5.4. Произвести проверку результатов юстировки, проконтролировав в режиме РАБОТА показания верхнего цифрового индикатора, которые должны быть равны $100,0\pm0,2\%$.

показания верхнего цифрового индикатора, которые должны оыть равны 100,0 ± 0,2 %.

ВНИМАНИЕ! При выполнении работ по пп. Е.5.3...Е.5.4 выходной ток калибратора должен

внимание: при выполнении раоот по пп. Е.5.3...е.5.4 выходнои ток калиоратора должег оставаться неизменным и равным значению, заданному в п. Е.5.2.

Е.5.5. Отключить питание прибора и отключить от него вольтметр В1-12.

Е.6. Юстировка прибора для работы с датчиками с выходным сигналом постоянного напряжения

Е.6.1. Подключить к основному входу прибора вместо датчика дифференциальный вольтметр В1-12 в режиме калибратора напряжения, или аналогичный ему источник образцового постоянного напряжения с классом точности не хуже 0,05. Соединение прибора с В1-12 выполнять по схеме, приведенной на рис. Е.2, с соблюдением полярности подключения.

Е.6.2. Подать питание на прибор и установить тип датчика (параметр $\bar{\iota} n$ - $\bar{\iota} t$), соответствующий используемому типу первичного преобразователя. Установить в параметре $\bar{\iota} n$ - $\bar{\iota} t$ значение **0.0**, а в параметре $\bar{\iota} n$ - $\bar{\iota} t$ значение **100.0**.

Задать на выходе калибратора значение напряжения, соответствующее типу установленного датчика, см. табл. E.1

Перевести прибор в режим РАБОТА и через 5...10 с проконтролировать показания прибора. Эти показания должны быть равны $100,0\pm0,2\%$. Если погрешность измерений в этой точке превышает приведенное значение, выполнить операции, указанные в пп. Е.6.3 и п. Е.6.4.

E.6.3. Произвести юстировку прибора, выполняя действия в порядке и последовательности, приведенных в разд. E.2.

Е.6.4. Произвести проверку результатов юстировки, проконтролировав в режиме РАБОТА показания верхнего цифрового индикатора, которые должны быть равны $100,0 \pm 0,2\%$.

ВНИМАНИЕ! При выполнении работ по пп. Е.6.2...Е.6.4 выходное напряжение калибратора должно оставаться неизменным и равным значению, заданному в п. Е.6.2.

Е.6.5. Отключить питание прибора и отключить от него вольтметр В1-12.

Е. 7. Юстировка датчика температуры свободных концов термопар

- Е.7.1. Подключить, соблюдая полярность соединения, к основному входу прибора свободные концы термопары. Поместить рабочий спай термопары в сосуд, содержащий смесь льда и воды (температура смеси 0 °C).
- Е.7.2. Подать питание на прибор и установить тип датчика (параметр $\bar{L}n-\dot{L}$), соответствующий типу подключенной термопары.
- Е.7.3. Перевести прибор в режим РАБОТА и после прогрева прибора в течение 20 минут произвести юстировку датчика температуры свободных концов, установив параметр *ELb5* в значение *rlin* и нажав кнопку (пог).

Е.7.4. Произвести проверку результатов юстировки, проконтролировав в режиме измерения показания на верхнем цифровом индикаторе, которые должны быть равны значению 0 °C с абсолютной погрешностью не хуже 1,0 °C.

Е.8. Юстировка выходных устройств типа «И» и «У»

Е.8.1. Подключить ВУ типа «И» (ЦАП «параметр-ток 4..20 мА»); ВУ типа «У» (ЦАП «параметр-напряжение 0..10 В») по схемам, приведенным на рис. Е.4 – Е.7.

Напряжение источника питания должно быть в диапазоне 15...28 В. В качестве измерителя напряжения может быть использован прибор для калибровки вольтметров P3003 или иной прибор того же класса с разрешающей способностью 0,001 В.

Е.8.2. Вычисление коэффициентов юстировки производится при изменении значений программируемых параметров в группе *ERLb*.

Для доступа к группе следует одновременно нажать кнопки (ppot)+(***)+(***) и удерживать до появления **РЯ55**.

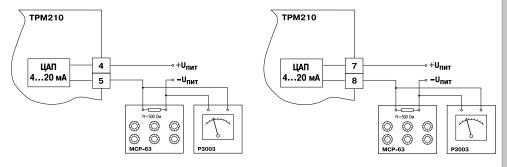


Рис.Е.4. Подключение ВУ1 типа И

Юстировка

Рис.Е.5. Подключение ВУ2 типа И

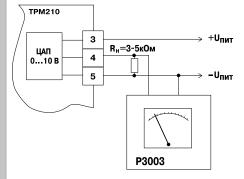


Рис.Е.6. Подключение ВУ1 типа У

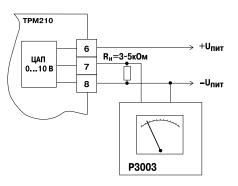


Рис.Е.7. Подключение ВУ2 типа У

Кнопками (🔊), (😻 установить код 104.

Е.8.3. После набора кода нажать (прог.).

Е.8.4. Для юстировки ВУ1 кнопками \$, \$ выбрать параметр «Коэффициент юстировки минимальной границы выходного сигнала для ЦАП 1» $\bar{\iota}$ l- \bar{l} . Изменяя значение параметра, добиться, чтобы показания вольтметра равнялись:

2,0 В при юстировке ЦАП 4..20 мА;

– 0,0 В при юстировке ЦАП 0..10 В.

Нажать кнопку (тот). На индикаторе отобразится параметр «Коэффициент юстировки максимальной границы выходного сигнала для ЦАП 1» \bar{c} !- !.

Е.8.5. Изменяя значение параметра \bar{c} *l*- *l*, добиться, чтобы показания вольтметра равнялись:

10,0 В при юстировке ЦАП 4..20 мА;

10,0 В при юстировке ЦАП 0..10 В.

Нажать кнопку (ПРОГ.).

Е.8.6. Для юстировки ВУ2 выполнить действия, описанные в пп. Е.8.2–Е.8.5, подобрав соответственно значения параметров «Коэффициент юстировки минимальной границы выходного сигнала для ЦАП $2 - \bar{c} \ \vec{c} - \vec{l}$, «Коэффициент юстировки максимальной границы выходного сигнала для ЦАП $2 - \bar{c} \ \vec{c} - \vec{l}$.

Е.8.7. Для выхода из режима юстировки удерживать кнопку (прог.) в течении 6 с.

Отключить питание прибора и отключить оборудование.

Лист регистрации изменений

№ измене-	- Номера листов (стр.)			Всего листов	Дата	Подпись	
ния	измен.	заменен.	новых	аннулир.	(стр.)	внесения	
1	2	3	4	5	6	7	8
	·						
				1			

СВИДЕТЕЛЬСТВО О ПРИЕМКЕ И ПРОДАЖЕ

Прибор ТРМ210, заводской номер

соответствует паспортным данным и признан годным к эксплуатации.

Дата выпуска _____

Штамп ОТК ______ Дата продажи _____